GP / dsl.py
woletee
this is the commit for adding the gp interface
ded89f7
import numpy as np
from typing import Tuple, List
# Define Count as an alias for int
Count = int
from scipy.ndimage import binary_dilation
from scipy import ndimage
from typing import Callable
class GridList(list):
pass
class PrimitiveException(Exception):
pass
# Simple Grid class
class Grid:
def __init__(self, grid: np.ndarray, position: Tuple[int, int]=(0, 0)):
self.grid = grid
self.position = position
@property
def size(self):
return self.grid.shape
def newgrid(self, grid: np.ndarray, position=None):
if position is None:
position = self.position
return Grid(grid, position)
def count(self):
return np.count_nonzero(self.grid)
Colour = int
def primitive_assert(condition, message="Assertion failed"):
if not condition:
raise ValueError(message)
# DSL primitives
def rot90(g: Grid) -> Grid:
return g.newgrid(np.rot90(g.grid))
def rot180(g: Grid) -> Grid:
return g.newgrid(np.rot90(g.grid, 2))
def ic_compress2(g: Grid) -> Grid:
keep_rows = np.any(g.grid, axis=1)
keep_cols = np.any(g.grid, axis=0)
return g.newgrid(g.grid[keep_rows][:, keep_cols])
def flipy(g: Grid) -> Grid:
return g.newgrid(np.flip(g.grid, axis=1))
def mirrorX(g: Grid) -> Grid:
return Grid(np.hstack((g.grid, np.fliplr(g.grid))))
def mirrorY(g: Grid) -> Grid:
return Grid(np.vstack((g.grid, np.flipud(g.grid))))
def overlay(g: Grid, h: Grid) -> Grid:
if g.size == h.size:
newgrid = Grid(g.grid.copy())
newgrid.grid[h.grid != 0] = h.grid[h.grid != 0]
return newgrid
else:
xpos = min(g.position[0], h.position[0])
ypos = min(g.position[1], h.position[1])
xsize = max(g.position[0]+g.size[0], h.position[0]+h.size[0]) - xpos
ysize = max(g.position[1]+g.size[1], h.position[1]+h.size[1]) - ypos
newgrid = Grid(np.zeros((xsize, ysize)), position=(xpos, ypos))
newgrid.grid[g.position[0]-xpos:g.position[0]-xpos+g.size[0],
g.position[1]-ypos:g.position[1]-ypos+g.size[1]] = g.grid
mask = np.nonzero(h.grid)
slice = newgrid.grid[h.position[0]-xpos:h.position[0]-xpos+h.size[0],
h.position[1]-ypos:h.position[1]-ypos+h.size[1]]
slice[mask] = h.grid[mask]
return newgrid
def set_bg(c: Colour, g: Grid) -> Grid:
primitive_assert(c != 0, "background with 0 has no effect")
grid = np.copy(g.grid)
grid[grid == 0] = c
return g.newgrid(grid)
def ic_composegrowing(l: List[Grid]) -> Grid:
xpos = min([g.position[0] for g in l])
ypos = min([g.position[1] for g in l])
xsize = max([g.position[0]+g.size[0] for g in l]) - xpos
ysize = max([g.position[1]+g.size[1] for g in l]) - ypos
newgrid = Grid(np.zeros((xsize, ysize)), position=(xpos, ypos))
sorted_list = sorted(l, key=lambda g: g.count(), reverse=True)
for g in sorted_list:
xstart = g.position[0] - xpos
ystart = g.position[1] - ypos
slice = newgrid.grid[xstart:xstart+g.size[0], ystart:ystart+g.size[1]]
mask = np.nonzero(g.grid)
slice[mask] = g.grid[mask]
return newgrid
def ic_splitall(g: Grid) -> GridList:
colours = np.unique(g.grid)
ret = []
for colour in colours:
if colour:
labeled_grid, _ = ndimage.label(g.grid == colour)
objects = ndimage.find_objects(labeled_grid)
ret += [g.newgrid(g.grid[obj], position=(obj[0].start, obj[1].start)) for obj in objects]
return ret
def ic_connect_kernel(g: Grid, x: bool, y: bool) -> Grid:
"""
Implements a generic connect (not a primitive)
x and y control whether it is enabled in the horizontal and vertical directions
Connect works as follows:
Two cells in the same row/column are connected iff:
- they are both non-zero
- they have the same value c
- there are only zeros in between them
Connect fills in the zero values in-between with c.
Note that vertical connection happens after horizontal connection and "overrides" it.
This function is SLOW
TODO: Verify this actually works because I'm not confident
"""
ret = np.zeros_like(g.grid)
if x:
for row in range(g.grid.shape[0]):
last = last_value = -1
for col in range(g.grid.shape[1]):
if g.grid[row, col]:
if g.grid[row, col] == last_value:
ret[row, last+1:col] = last_value
last_value = g.grid[row, col]
last = col
if y:
for col in range(g.grid.shape[1]):
last = last_value = -1
for row in range(g.grid.shape[0]):
if g.grid[row, col]:
if g.grid[row, col] == last_value:
ret[last+1:row, col] = last_value
last_value = g.grid[row, col]
last = row
return g.newgrid(ret)
def ic_connectY(g: Grid) -> Grid:
return ic_connect_kernel(g, False, True)
def ic_connectX(g: Grid) -> Grid:
return ic_connect_kernel(g, True, False)
def ic_compress2(g: Grid) -> Grid:
"""Deletes any black rows/columns in the grid"""
keep_rows = np.any(g.grid, axis=1)
keep_cols = np.any(g.grid, axis=0)
return g.newgrid(g.grid[keep_rows][:, keep_cols])
def ic_compress3(g: Grid) -> Grid:
"""
Keep any rows/columns which differ in any way from the previous row/column
The first row/column is always kept.
"""
keep_rows = np.ones(g.grid.shape[0], dtype=bool)
keep_cols = np.ones(g.grid.shape[1], dtype=bool)
for row in range(1, g.grid.shape[0]):
if np.all(g.grid[row] == g.grid[row-1]):
keep_rows[row] = False
for col in range(1, g.grid.shape[1]):
if np.all(g.grid[:, col] == g.grid[:, col-1]):
keep_cols[col] = False
return g.newgrid(g.grid[keep_rows][:, keep_cols])
def ic_erasecol(c: Colour, g: Grid) -> Grid:
"Remove a specified colour from the grid, keeping others intact"
primitive_assert(c != 0, "erasecol with 0 has no effect")
grid = np.copy(g.grid)
grid[grid == c] = 0
return g.newgrid(grid)
def rarestcol(g: Grid) -> Colour:
"""
Returns the least common colour, excluding black.
Excludes any colours with zero count.
"""
counts = np.bincount(g.grid.ravel())[1:]
counts[counts == 0] = 9999
return np.argmin(counts)+1
def left_half(g: Grid) -> Grid:
primitive_assert(g.size[1] > 1, "Grid is too small to crop")
return g.newgrid(g.grid[:, :g.grid.shape[1]//2])
def right_half(g: Grid) -> Grid:
primitive_assert(g.size[1] > 1, "Grid is too small to crop")
new_position = (g.position[0], g.position[1] + g.grid.shape[1]//2 + g.grid.shape[1]%2)
return g.newgrid(g.grid[:, -g.grid.shape[1]//2:], position=new_position)
def top_half(g: Grid) -> Grid:
primitive_assert(g.size[0] > 1, "Grid is too small to crop")
return g.newgrid(g.grid[:g.grid.shape[0]//2])
def repeatX(g: Grid) -> Grid:
"""
Repeat the grid g horizontally, with no gaps
"""
return Grid(np.tile(g.grid, (1, 2)), position=g.position)
def flipx(g: Grid) -> Grid:
return g.newgrid(np.flip(g.grid, axis=0))
# Your custom primitive function
def ic_pickunique(l: List[Grid]) -> Grid:
"""
Given a list of grids, return the one which has a unique colour unused by any other grid.
If there are no such grids or more than one, terminate.
"""
counts = np.zeros(10)
uniques = [np.unique(g.grid) for g in l]
for u in uniques:
counts[u] += 1
colour_mask = counts == 1
ccount = np.sum(colour_mask)
if not ccount:
raise PrimitiveException("pickunique: no unique grids")
for g, u in zip(l, uniques):
if np.sum(colour_mask[u]) == ccount:
return g
raise PrimitiveException("pickunique: no unique grids (2)")
def countToXY(c: int, col: Colour) -> Grid:
"""
Given a count (integer) and a colour, create a square grid of size c×c filled with the given colour.
"""
return Grid(np.full((c, c), col, dtype=int))
# Primitive definitions
def gravity(g: Grid, dx=False, dy=False) -> Grid:
assert dx or dy
pieces = ic_splitall(g)
# Sort pieces by gravity direction
pieces = sorted(pieces,
key=lambda g: -(g.position[0]*dy + g.position[1]*dx))
# Start with empty grid
newgrid = Grid(np.zeros(g.size))
# Iterate over pieces
for p in pieces:
while True:
# Move piece by gravity direction
p.position = (p.position[0]+dy, p.position[1]+dx)
# Check bounds
if (p.position[0] < 0 or p.position[0]+p.size[0] > g.size[0] or
p.position[1] < 0 or p.position[1]+p.size[1] > g.size[1]):
p.position = (p.position[0]-dy, p.position[1]-dx)
break
# Collision check
slice = newgrid.grid[
p.position[0]:p.position[0]+p.size[0],
p.position[1]:p.position[1]+p.size[1]
]
if slice[p.grid != 0].any():
p.position = (p.position[0]-dy, p.position[1]-dx)
break
# Composite piece
newgrid = overlay(newgrid, p)
return newgrid
# Wrapper primitive: gravity to the right
def gravity_right(g: Grid) -> Grid:
return gravity(g, dx=1)
struct8 = np.array([[1, 1, 1],
[1, 1, 1],
[1, 1, 1]], dtype=int)
def split8(g: Grid) -> List[Grid]:
"""
Find all objects using 8-connected structuring element.
Each colour is separated.
"""
colours = np.unique(g.grid)
ret = []
for colour in colours:
if colour:
objects = ndimage.find_objects(ndimage.label(g.grid == colour, structure=struct8)[0])
ret += [g.newgrid(g.grid[obj], offset=(obj[0].start, obj[1].start)) for obj in objects]
return ret
def ic_makeborder(g: Grid) -> Grid:
"""
Return a new grid which is the same as the input, but with a border of 1s around it.
Only elements which are 0 in the original grid are set to 1 in the new grid.
8-connected structuring element used to determine border positions.
"""
binary_grid = g.grid > 0
output_grid = np.zeros_like(g.grid)
grown_binary_grid = binary_dilation(binary_grid, structure=np.ones((3, 3)))
output_grid[grown_binary_grid & ~binary_grid] = 1
return g.newgrid(output_grid)
def ic_filtercol(c: Colour, g: Grid) -> Grid:
"Remove all colours except the selected colour"
primitive_assert(c != 0, "filtercol with 0 has no effect")
grid = np.copy(g.grid) # Do we really need to copy? old one thrown away anyway
grid[grid != c] = 0
return g.newgrid(grid)
def ic_invert(g: Grid) -> Grid:
"""
Replaces all colours with zeros, and replaces zeros with the most common colour.
"""
mode = np.argmax(np.bincount(g.grid.ravel())[1:]) + 1 # skip counting 0
grid = np.zeros_like(g.grid)
grid[g.grid == 0] = mode
return g.newgrid(grid)
def logical_and(g: Grid, h: Grid) -> Grid:
"""
Logical AND between two grids. Use the colour of the first argument.
Logical OR is given by overlay.
"""
primitive_assert(g.size == h.size, "logical_and: grids must be the same size")
mask = np.logical_and(g.grid != 0, h.grid != 0)
return g.newgrid(np.where(mask, g.grid, 0))
struct4 = np.array([[0,1,0],
[1,1,1],
[0,1,0]], dtype=int)
def fillobj(c: Colour, g: Grid) -> Grid:
"""
Fill in any closed objects in the grid with a specified colour.
Uses 4-connectedness to determine closed objects.
"""
primitive_assert(c != 0, "fill with 0 has no effect")
binhole = ndimage.binary_fill_holes(g.grid != 0, structure=struct4)
newgrid = np.copy(g.grid)
newgrid[binhole & (g.grid == 0)] = c
return g.newgrid(newgrid)
def topcol(g: Grid) -> Colour:
"""
Returns the most common colour in the grid, excluding black (0).
Equivalent to majCol in icecuber.
"""
return np.argmax(np.bincount(g.grid.ravel())[1:]) + 1
def rarestcol(g: Grid) -> Colour:
"""
Returns the least common colour in the grid, excluding black.
Colours with zero occurrences are ignored.
"""
counts = np.bincount(g.grid.ravel())[1:]
counts[counts == 0] = 9999
return np.argmin(counts) + 1
def gravity_down(g: Grid) -> Grid:
return gravity(g, dy=1)
def setcol(c: Colour, g: Grid) -> Grid:
"""
Set all pixels in the grid to the specified colour.
Originally named colShape in icecuber.
"""
primitive_assert(c != 0, "setcol with 0 has no effect")
grid = np.zeros_like(g.grid)
grid[np.nonzero(g.grid)] = c
return g.newgrid(grid)
def ic_embed(img: Grid, shape: Grid) -> Grid:
"""
Embeds a grid into a larger shape defined by a second argument (zero-padded).
If the image is larger than the shape, it is cropped.
"""
ret = np.zeros_like(shape.grid)
xoffset = shape.position[0] - img.position[0]
yoffset = shape.position[1] - img.position[1]
xsize = min(img.grid.shape[0], shape.grid.shape[0] - xoffset)
ysize = min(img.grid.shape[1], shape.grid.shape[1] - yoffset)
ret[xoffset:xoffset+xsize, yoffset:yoffset+ysize] = img.grid[:xsize, :ysize]
return shape.newgrid(ret)
def rot270(g: Grid) -> Grid:
"""
Rotate a grid by 270 degrees.
"""
return g.newgrid(np.rot90(g.grid, k=3))
def mapSplit8(f: Callable[[Grid], Grid], g: Grid) -> Grid:
"""
Split grid g into objects using 8-connectedness,
apply function f to each object, and then reassemble.
"""
pieces = split8(g)
processed_pieces = [f(piece) for piece in pieces]
return ic_composegrowing(processed_pieces)
from collections import Counter
def pickcommon(l: List[Grid]) -> Grid:
"""
Given a list of grids, return the grid that appears most frequently (by exact match).
"""
primitive_assert(len(l) > 0, "pickcommon: list is empty")
hashes = [hash(g.grid.data.tobytes()) for g in l]
most_common_hash = Counter(hashes).most_common(1)[0][0]
return l[hashes.index(most_common_hash)]
def swapxy(g: Grid) -> Grid:
return g.newgrid(g.grid.T)
def topcol(g: Grid) -> Colour:
"""
Returns the most common colour, excluding black.
majCol in icecuber.
"""
return np.argmax(np.bincount(g.grid.ravel())[1:])+1
def setcol(c: Colour, g: Grid) -> Grid:
"""
Set all pixels in the grid to the specified colour.
This was named colShape in icecuber.
"""
primitive_assert(c != 0, "setcol with 0 has no effect")
grid = np.zeros_like(g.grid)
grid[np.nonzero(g.grid)] = c
return g.newgrid(grid)
def get_bg(c: Colour, g: Grid) -> Grid:
"""
Return a grid of all the background pixels in g, coloured c
Essentially same as invert.
"""
return Grid(np.where(g.grid == 0, c, 0))
def rarestcol(g: Grid) -> Colour:
"""
Returns the least common colour, excluding black.
Excludes any colours with zero count.
"""
counts = np.bincount(g.grid.ravel())[1:]
counts[counts == 0] = 9999
return np.argmin(counts)+1
def ic_fill(g: Grid) -> Grid:
"""
Returns a grid with all closed objects filled in with the most common colour
Note that like Icecuber, this also colours everything not connected to the border with the most common colour
i.e. the result is a single colour
"""
return setcol(topcol(g), fillobj(1, g))
def ic_center(g: Grid) -> Grid:
# TODO: Figure out why this is useful
w,h = g.size
newsize = ((w + 1) % 2 + 1, (h + 1) % 2 + 1)
newgrid = np.ones(newsize)
newpos = (
g.position[0] + (newsize[0] - w) / 2,
g.position[1] + (newsize[1] - h) / 2
)
return Grid(newgrid, newpos)
def countToY(c: Count, col: Colour) -> Grid:
"""
Create a vertical (1×c) grid filled with the given colour.
"""
return Grid(np.full((1, c), col, dtype=int))
def countPixels(g: Grid) -> Count:
"""
Count the number of non-zero pixels in the grid.
"""
return np.count_nonzero(g.grid)
def ic_splitcols(g: Grid) -> List[Grid]:
"""
Split a grid into multiple grids, each with a single colour.
"""
ret = []
for colour in np.unique(g.grid):
if colour:
ret.append(g.newgrid(g.grid == colour))
return ret
def grid_split(g: Grid) -> GridList:
# Get rows and columns that are filled with a single color
row_colors = [row[0] for row in g.grid if np.all(row == row[0])]
col_colors = [col[0] for col in g.grid.T if np.all(col == col[0])]
colors = row_colors + col_colors
primitive_assert(len(colors) > 0, "No uniform rows or columns found")
# Find the most common such color
color = np.argmax(np.bincount(colors))
# Now split along rows and columns with this color
horizontal_splits = []
current = []
for row in g.grid:
if np.all(row == color):
if current:
horizontal_splits.append(np.stack(current))
current = []
else:
current.append(row)
if current:
horizontal_splits.append(np.stack(current))
# Convert each resulting piece to Grid
result = []
for h in horizontal_splits:
if h.shape[0] > 0:
result.append(Grid(h))
return GridList(result)
def arc_assert(boolean, message=None):
if not boolean:
# print('ValueError')
raise ValueError(message)
def _get(l):
def get(l, i):
arc_assert(i >= 0 and i < len(l))
return l[i]
return lambda i: get(l, i)
def stack_no_crop(l: GridList) -> Grid:
"""
Stack same-size grids with masking — first grids drawn underneath later ones.
"""
primitive_assert(len(l) > 0, "Empty GridList in stack_no_crop")
shape = l[0].grid.shape
for g in l:
primitive_assert(g.grid.shape == shape, "Mismatched grid shapes in stack_no_crop")
stackedgrid = np.zeros(shape, dtype=int)
for g in l:
stackedgrid += g.grid * (stackedgrid == 0)
return Grid(stackedgrid)
def overlay(g1: Grid, g2: Grid) -> Grid:
"""
Mask overlay of g2 on top of g1.
"""
primitive_assert(g1.grid.shape == g2.grid.shape, "Overlay shape mismatch")
result = g1.grid.copy()
result[g2.grid != 0] = g2.grid[g2.grid != 0]
return Grid(result)
def _objects2(g: Grid) -> Callable[[bool], Callable[[bool], GridList]]:
"""
Extract connected components (objects) from grid.
Options:
- connect_diagonals: whether to connect diagonally
- separate_colors: whether to segment by color
"""
def inner(connect_diagonals: bool):
def inner2(separate_colors: bool):
structure = ndimage.generate_binary_structure(2, 2 if connect_diagonals else 1)
components = []
if separate_colors:
colors = np.unique(g.grid)
colors = colors[colors != 0]
for c in colors:
mask = (g.grid == c).astype(int)
labeled, num = ndimage.label(mask, structure)
for i in range(1, num + 1):
submask = (labeled == i).astype(int) * c
components.append(Grid(submask))
else:
mask = (g.grid != 0).astype(int)
labeled, num = ndimage.label(mask, structure)
for i in range(1, num + 1):
submask = (labeled == i).astype(int) * g.grid
components.append(Grid(submask))
return GridList(components)
return inner2
return inner
def _objects(g: Grid) -> GridList:
connect_diagonals = False
separate_colors = True
return _objects2(g)(connect_diagonals)(separate_colors)
def move_down(g: Grid) -> Grid:
"""
Moves the first extracted object down by one row and overlays it back.
"""
objects = _objects(g)
primitive_assert(len(objects) > 0, "No objects found to move.")
obj = objects[0]
newg = Grid(np.copy(g.grid))
newg.grid[obj.grid != 0] = 0
moved_obj = Grid(np.roll(obj.grid, 1, axis=0), position=obj.position)
return overlay(newg, moved_obj)
def draw_line(g: Grid, angle: int) -> Grid:
"""
Draw a line from some starting condition in the grid in the given direction.
Supported angles: 0 (right), 90 (up), 180 (left), 270 (down)
"""
# For example, draw a line from top-left corner in given direction
new_grid = np.copy(g.grid)
h, w = new_grid.shape
if angle == 0: # Right
new_grid[0, :] = 1
elif angle == 90: # Up
new_grid[:, 0] = 1
elif angle == 180: # Left
new_grid[-1, :] = 1
elif angle == 270: # Down
new_grid[:, -1] = 1
else:
primitive_assert(False, f"Unsupported angle: {angle}")
return Grid(new_grid)
def draw_line_slant_up(g: Grid) -> Grid:
"""
Extracts first object and draws a 45-degree line from it.
"""
objects = _objects(g)
primitive_assert(len(objects) > 0, "No objects found in draw_line_slant_up.")
obj = objects[0]
return draw_line(g)(obj)(45)
def draw_line_slant_down(g: Grid) -> Grid:
"""
Automatically extracts the first object from the grid and draws a 315-degree slant.
"""
objects = _objects(g)
primitive_assert(len(objects) > 0, "No objects found in draw_line_slant_down.")
obj = objects[0]
return draw_line(g)(obj)(315)
def _place_into_grid(objects):
grid = np.zeros(objects[0].input_grid.shape, dtype=int)
# print('grid: {}'.format(grid))
for obj in objects:
# print('obj: {}'.format(obj))
# note: x, y, w, h should be flipped in reality. just go with it
y, x = obj.position
# print('x, y: {}'.format((x, y)))
h, w = obj.grid.shape
g_h, g_w = grid.shape
# may need to crop the grid for it to fit
# if negative, crop out the first parts
o_x, o_y = max(0, -x), max(0, -y)
# if negative, start at zero instead
x, y = max(0, x), max(0, y)
# this also affects the width/height
w, h = w - o_x, h - o_y
# if spills out sides, crop out the extra
w, h = min(w, g_w - x), min(h, g_h - y)
# print('x, y = {}, {}, o_x, o_y = {}, {}, w, h = {}, {}'.format(x, y,
# o_x, o_y, w, h))
grid[y:y+h, x:x+w] = obj.grid[o_y: o_y + h, o_x: o_x + w]
return Grid(grid)