|
|
|
|
|
|
|
from transformers.models.t5.modeling_t5 import ( |
|
T5Model, |
|
T5Config, |
|
T5Stack, |
|
T5PreTrainedModel, |
|
T5Block, |
|
T5LayerNorm, |
|
T5LayerFF, |
|
T5LayerSelfAttention, |
|
T5Attention, |
|
T5LayerCrossAttention, |
|
) |
|
|
|
from transformers.modeling_outputs import ( |
|
CausalLMOutputWithPast, |
|
BaseModelOutputWithPastAndCrossAttentions, |
|
SequenceClassifierOutputWithPast, |
|
TokenClassifierOutput, |
|
) |
|
|
|
|
|
|
|
import math |
|
import torch |
|
from torch import nn |
|
from torch.nn.parameter import Parameter |
|
import torch.nn.functional as F |
|
|
|
|
|
class VisionTransformerEmbedding(nn.Module): |
|
def __init__(self, embed_dim, config): |
|
super(VisionTransformerEmbedding, self).__init__() |
|
self.config = config |
|
self.embed_dim = embed_dim |
|
|
|
|
|
if self.config.PE_mix_strategy in ['learnable_scaling_vec', 'weighted_sum_vec', 'weighted_sum_no_norm_vec']: |
|
self.position_scale = nn.Parameter(torch.ones(1, embed_dim)) |
|
self.input_weight = nn.Parameter(torch.ones(1,embed_dim)) |
|
self.position_weight = nn.Parameter(torch.ones(1,embed_dim)) |
|
|
|
if self.config.PE_mix_strategy in ['learnable_scaling', 'weighted_sum', 'weighted_sum_no_norm']: |
|
self.position_scale = nn.Parameter(torch.ones(1)) |
|
self.input_weight = nn.Parameter(torch.ones(1)) |
|
self.position_weight = nn.Parameter(torch.ones(1)) |
|
|
|
|
|
if self.config.PE_mix_strategy == 'positional_attention': |
|
self.attention = nn.MultiheadAttention(embed_dim, num_heads=8) |
|
|
|
|
|
if self.config.PE_mix_strategy == 'layer_norm': |
|
self.layer_norm = nn.LayerNorm(embed_dim) |
|
|
|
def forward(self, inputs_embeds, position_embeds): |
|
strategy = self.config.PE_mix_strategy |
|
|
|
if strategy == 'hardcoded_normalization': |
|
inputs_embeds_norm = F.normalize(inputs_embeds, p=2, dim=-1) |
|
position_embeds_norm = F.normalize(position_embeds, p=2, dim=-1) |
|
output_embeds = inputs_embeds_norm + position_embeds_norm |
|
|
|
elif strategy in ['learnable_scaling','learnable_scaling_vec']: |
|
scaled_position_embeds = self.position_scale * position_embeds |
|
output_embeds = inputs_embeds + scaled_position_embeds |
|
|
|
elif strategy in ['weighted_sum','weighted_sum_vec']: |
|
inputs_embeds_norm = F.normalize(inputs_embeds, p=2, dim=-1) |
|
position_embeds_norm = F.normalize(position_embeds, p=2, dim=-1) |
|
output_embeds = (self.input_weight * inputs_embeds_norm) + (self.position_weight * position_embeds_norm) |
|
|
|
elif strategy in ['weighted_sum_no_norm','weighted_sum_no_norm_vec']: |
|
|
|
output_embeds = (self.input_weight * inputs_embeds) + (self.position_weight * position_embeds) |
|
|
|
elif strategy == 'positional_attention': |
|
|
|
position_embeds_expanded = position_embeds.expand(inputs_embeds.shape[0], -1, -1) |
|
|
|
|
|
inputs_embeds_reshaped = inputs_embeds.transpose(0, 1) |
|
position_embeds_reshaped = position_embeds_expanded.transpose(0, 1) |
|
|
|
attn_output, _ = self.attention(inputs_embeds_reshaped, position_embeds_reshaped, position_embeds_reshaped) |
|
output_embeds = inputs_embeds_reshaped + attn_output |
|
|
|
|
|
output_embeds = output_embeds.transpose(0, 1) |
|
|
|
elif strategy == 'layer_norm': |
|
combined_embeds = inputs_embeds + position_embeds |
|
|
|
output_embeds = self.layer_norm(combined_embeds) |
|
|
|
elif strategy == 'default': |
|
output_embeds = inputs_embeds + position_embeds |
|
|
|
else: |
|
raise ValueError(f"Unsupported PE_mix_strategy: {strategy}") |
|
|
|
return output_embeds |
|
|
|
|
|
|
|
class PositionalEmbedding(nn.Module): |
|
def __init__(self, demb): |
|
super().__init__() |
|
|
|
self.demb = demb |
|
|
|
inv_freq = 1 / (10000 ** (torch.arange(0.0, demb, 2.0) / demb)) |
|
self.register_buffer("inv_freq", inv_freq) |
|
|
|
def forward(self, pos_seq, bsz=None): |
|
sinusoid_inp = torch.ger(pos_seq, self.inv_freq) |
|
pos_emb = torch.cat([sinusoid_inp.sin(), sinusoid_inp.cos()], dim=-1) |
|
|
|
if bsz is not None: |
|
return pos_emb[None, :, :].expand(bsz, -1, -1) |
|
else: |
|
return pos_emb[None, :, :] |
|
|
|
|
|
class FixedAbsolutePositionalEmbedding(nn.Module): |
|
def __init__(self, dim): |
|
super().__init__() |
|
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim)) |
|
t = torch.arange(16384).type_as(inv_freq) |
|
sinusoid_inp = torch.einsum("i , j -> i j", t, inv_freq) |
|
emb = torch.cat((sinusoid_inp.sin(), sinusoid_inp.cos()), dim=-1) |
|
self.embed = nn.Embedding.from_pretrained(emb, freeze=True) |
|
|
|
def forward(self, position_ids: torch.Tensor): |
|
return self.embed(position_ids.long()) |
|
|
|
|
|
class FixedRotaryPositionalEmbedding(nn.Module): |
|
def __init__( |
|
self, rotary_dim: int, rotary_base: int = 10000, max_position: int = 16384 |
|
): |
|
super().__init__() |
|
|
|
|
|
|
|
inv_freq = 1.0 / ( |
|
rotary_base ** (torch.arange(0, rotary_dim, 2).float() / rotary_dim) |
|
) |
|
|
|
|
|
t = torch.arange(max_position, device=inv_freq.device, dtype=inv_freq.dtype) |
|
freqs = torch.einsum("i,j->ij", t, inv_freq) |
|
|
|
sins = torch.sin(freqs) |
|
coss = torch.cos(freqs) |
|
|
|
emb = torch.cat([sins, coss], dim=-1) |
|
self.embed = nn.Embedding.from_pretrained(emb, freeze=True) |
|
|
|
def forward(self, position_ids: torch.Tensor): |
|
return self.embed(position_ids.long()) |
|
|
|
def fixed_pos_embedding(x, seq_dim=1, seq_len=None): |
|
dim = x.shape[-1] |
|
if seq_len is None: |
|
seq_len = x.shape[seq_dim] |
|
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2) / dim)) |
|
sinusoid_inp = ( |
|
torch.einsum("i , j -> i j", torch.arange(seq_len), inv_freq) |
|
.to(x.device) |
|
.float() |
|
) |
|
return torch.sin(sinusoid_inp), torch.cos(sinusoid_inp) |
|
|
|
|
|
def rotate_every_two(x): |
|
""" |
|
Example: [a, b, c, d] -> [-b, a, -d, c] |
|
""" |
|
x1 = x[:, :, :, ::2] |
|
x2 = x[:, :, :, 1::2] |
|
x = torch.stack((-x2, x1), axis=-1) |
|
return x.flatten(-2) |
|
|
|
|
|
def apply_rotary_pos_emb(x, sincos, offset=0): |
|
sin, cos = map( |
|
lambda t: t[None, offset : x.shape[1] + offset, None, :].repeat_interleave( |
|
2, 3 |
|
), |
|
sincos, |
|
) |
|
|
|
return (x * cos) + (rotate_every_two(x) * sin) |
|
|
|
|
|
def apply_rotary_pos_emb_new(x, sincos, offset=0): |
|
sin, cos = map( |
|
lambda t: t[:, :, None, :].repeat_interleave(2, 3), |
|
sincos, |
|
) |
|
|
|
return (x * cos) + (rotate_every_two(x) * sin) |
|
|
|
|
|
class CustomT5Attention(T5Attention): |
|
def __init__(self, config: T5Config, has_relative_attention_bias=False, pos_enc_type="RPE", attn_type="self", rpe_type="abs"): |
|
super().__init__(config) |
|
|
|
|
|
|
|
if "-" in pos_enc_type: |
|
pos_enc_split = pos_enc_type.split("-") |
|
self.pos_enc_type = pos_enc_split[0] |
|
self.struct_attn_type = pos_enc_split[1] |
|
else: |
|
self.pos_enc_type = pos_enc_type |
|
self.struct_attn_type = "" |
|
|
|
self.d_head = config.d_kv |
|
self.attn_type = attn_type |
|
self.rpe_type = rpe_type |
|
self.has_relative_attention_bias = has_relative_attention_bias |
|
|
|
if self.pos_enc_type == "RoPE": |
|
self.rotary_dim = None |
|
if getattr(config, "rotary_dim", None) is not None: |
|
self.rotary_dim = config.rotary_dim |
|
self.rotary_dim = int(0.25 * self.d_head) |
|
|
|
|
|
|
|
if self.pos_enc_type != "RPE": |
|
self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads) |
|
device = self.relative_attention_bias.weight.device |
|
|
|
|
|
if self.has_relative_attention_bias: |
|
if self.pos_enc_type == "RPE": |
|
self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads) |
|
elif self.pos_enc_type in ["Alibi","APEAlibi"]: |
|
|
|
if self.struct_attn_type == "duo": |
|
self.slopes_l = torch.Tensor(self.get_slopes(self.n_heads)).to(device)*-1 |
|
self.slopes_r = torch.Tensor(self.get_slopes(self.n_heads)).to(device)*-1 |
|
elif self.struct_attn_type == "rpe_sbias": |
|
self.slopes = torch.Tensor(self.get_slopes(self.n_heads)).to(device)*-1 |
|
self.struct_slopes = torch.Tensor(self.get_slopes(self.n_heads)).to(device)*-1 |
|
else: |
|
self.slopes = torch.Tensor(self.get_slopes(self.n_heads)).to(device)*-1 |
|
elif self.pos_enc_type == "KerpleLog": |
|
self.eps = 1e-2 |
|
self.bias_p = self.get_kerple_parameter(2, 'uniform',device) |
|
self.bias_a = self.get_kerple_parameter(1, 'uniform',device) |
|
elif self.pos_enc_type in ["NoPE", "LearnedAPE", "SinusoidalAPE","SinusoidalAPE2D", "RoPE"]: |
|
|
|
pass |
|
else: |
|
self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads) |
|
|
|
|
|
|
|
|
|
def get_kerple_parameter(self,scale, init_method, device): |
|
if init_method == 'ones': |
|
return Parameter(torch.ones( |
|
self.n_heads, |
|
device=device, |
|
)[:,None,None]*scale ) |
|
elif init_method == 'uniform': |
|
return Parameter(torch.rand( |
|
self.n_heads, |
|
device=device, |
|
)[:,None,None]*scale ) |
|
|
|
|
|
def get_slopes(self, n): |
|
def get_slopes_power_of_2(n): |
|
start = (2**(-2**-(math.log2(n)-3))) |
|
ratio = start |
|
return [start*ratio**i for i in range(n)] |
|
|
|
if math.log2(n).is_integer(): |
|
return get_slopes_power_of_2(n) |
|
else: |
|
closest_power_of_2 = 2**math.floor(math.log2(n)) |
|
return get_slopes_power_of_2(closest_power_of_2) + self.get_slopes(2*closest_power_of_2)[0::2][:n-closest_power_of_2] |
|
|
|
def compute_struct_bias(self, query_length, key_length, device=None, relative_position=None): |
|
"""Compute binned relative position bias""" |
|
if device is None: |
|
device = self.relative_attention_bias.weight.device |
|
|
|
|
|
if self.pos_enc_type in ["NoPE", "LearnedAPE", "SinusoidalAPE","SinusoidalAPE2D", "RoPE"]: |
|
return torch.zeros((1, self.n_heads, query_length, key_length), device=device) |
|
|
|
elif self.pos_enc_type in ["Alibi","APEAlibi"]: |
|
if self.struct_attn_type == "duo": |
|
if relative_position is None: |
|
context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None] |
|
memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :] |
|
relative_position = memory_position - context_position |
|
|
|
if self.rpe_type == "abs": |
|
relative_position = torch.abs(relative_position).unsqueeze(0).expand(self.n_heads, -1,-1) |
|
else: |
|
relative_position = relative_position.unsqueeze(0).expand(self.n_heads, -1,-1) |
|
|
|
self.slopes_l = self.slopes_l.to(device) |
|
self.slopes_r = self.slopes_r.to(device) |
|
|
|
alibi_left = self.slopes_l.unsqueeze(1).unsqueeze(1) * relative_position |
|
alibi_right = self.slopes_r.unsqueeze(1).unsqueeze(1) * relative_position |
|
|
|
values = torch.triu(alibi_right) + torch.tril(alibi_left) |
|
values = values.view(1, self.n_heads, query_length, key_length) |
|
return values |
|
else: |
|
if relative_position is None: |
|
context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None] |
|
memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :] |
|
relative_position = memory_position - context_position |
|
|
|
|
|
|
|
|
|
if self.rpe_type == "abs": |
|
relative_position = torch.abs(relative_position).unsqueeze(0).expand(self.n_heads, -1,-1) |
|
else: |
|
relative_position = relative_position.unsqueeze(0).expand(self.n_heads, -1,-1) |
|
|
|
|
|
|
|
self.struct_slopes = self.struct_slopes.to(device) |
|
|
|
values = self.struct_slopes.unsqueeze(1).unsqueeze(1) * relative_position |
|
values = values.view(1, self.n_heads, query_length, key_length) |
|
return values |
|
elif self.pos_enc_type == "KerpleLog": |
|
if relative_position is None: |
|
context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None] |
|
memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :] |
|
relative_position = memory_position - context_position |
|
if self.rpe_type == "abs": |
|
relative_position = torch.abs(relative_position).unsqueeze(0).expand(self.n_heads, -1,-1) |
|
else: |
|
relative_position = relative_position.unsqueeze(0).expand(self.n_heads, -1,-1) |
|
|
|
self.bias_p.data = self.bias_p.data.clamp(min=self.eps) |
|
self.bias_a.data = self.bias_a.data.clamp(min=self.eps) |
|
|
|
self.bias_p = self.bias_p.to(device) |
|
self.bias_a = self.bias_a.to(device) |
|
|
|
values = -self.bias_p*torch.log(1+self.bias_a*relative_position) |
|
values = values.unsqueeze(0) |
|
return values |
|
else: |
|
|
|
|
|
|
|
if relative_position is None: |
|
context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None] |
|
memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :] |
|
relative_position = memory_position - context_position |
|
relative_position_bucket = self._relative_position_bucket( |
|
relative_position, |
|
bidirectional=(not self.is_decoder), |
|
num_buckets=self.relative_attention_num_buckets, |
|
max_distance=self.relative_attention_max_distance, |
|
) |
|
values = self.relative_attention_bias(relative_position_bucket) |
|
values = values.permute([2, 0, 1]).unsqueeze(0) |
|
return values |
|
|
|
def compute_bias(self, query_length, key_length, device=None, relative_position=None): |
|
"""Compute binned relative position bias""" |
|
if device is None: |
|
device = self.relative_attention_bias.weight.device |
|
|
|
|
|
|
|
|
|
|
|
if self.pos_enc_type in ["NoPE", "LearnedAPE", "SinusoidalAPE","SinusoidalAPE2D", "RoPE"]: |
|
return torch.zeros((1, self.n_heads, query_length, key_length), device=device) |
|
|
|
elif self.pos_enc_type in ["Alibi","APEAlibi"]: |
|
if self.struct_attn_type == "duo": |
|
relative_position = relative_position.to(device) |
|
|
|
if self.rpe_type == "abs": |
|
relative_position = torch.abs(relative_position).unsqueeze(0).expand(self.n_heads, -1,-1) |
|
else: |
|
relative_position = relative_position.unsqueeze(0).expand(self.n_heads, -1,-1) |
|
|
|
self.slopes_l = self.slopes_l.to(device) |
|
self.slopes_r = self.slopes_r.to(device) |
|
|
|
alibi_left = self.slopes_l.unsqueeze(1).unsqueeze(1) * relative_position |
|
alibi_right = self.slopes_r.unsqueeze(1).unsqueeze(1) * relative_position |
|
|
|
values = torch.triu(alibi_right) + torch.tril(alibi_left) |
|
|
|
values = values[:, :query_length, :key_length] |
|
|
|
values = values.view(1, self.n_heads, query_length, key_length) |
|
|
|
|
|
return values |
|
else: |
|
if relative_position is None: |
|
context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None] |
|
memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :] |
|
relative_position = memory_position - context_position |
|
|
|
|
|
|
|
|
|
if self.rpe_type == "abs": |
|
relative_position = torch.abs(relative_position).unsqueeze(0).expand(self.n_heads, -1,-1) |
|
else: |
|
relative_position = relative_position.unsqueeze(0).expand(self.n_heads, -1,-1) |
|
|
|
|
|
|
|
self.slopes = self.slopes.to(device) |
|
|
|
values = self.slopes.unsqueeze(1).unsqueeze(1) * relative_position |
|
values = values.view(1, self.n_heads, query_length, key_length) |
|
return values |
|
elif self.pos_enc_type == "KerpleLog": |
|
if relative_position is None: |
|
context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None] |
|
memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :] |
|
relative_position = memory_position - context_position |
|
if self.rpe_type == "abs": |
|
relative_position = torch.abs(relative_position).unsqueeze(0).expand(self.n_heads, -1,-1) |
|
else: |
|
relative_position = relative_position.unsqueeze(0).expand(self.n_heads, -1,-1) |
|
|
|
self.bias_p.data = self.bias_p.data.clamp(min=self.eps) |
|
self.bias_a.data = self.bias_a.data.clamp(min=self.eps) |
|
|
|
self.bias_p = self.bias_p.to(device) |
|
self.bias_a = self.bias_a.to(device) |
|
|
|
values = -self.bias_p*torch.log(1+self.bias_a*relative_position) |
|
values = values.unsqueeze(0) |
|
return values |
|
else: |
|
|
|
|
|
|
|
if relative_position is None: |
|
context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None] |
|
memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :] |
|
relative_position = memory_position - context_position |
|
relative_position_bucket = self._relative_position_bucket( |
|
relative_position, |
|
bidirectional=(not self.is_decoder), |
|
num_buckets=self.relative_attention_num_buckets, |
|
max_distance=self.relative_attention_max_distance, |
|
) |
|
values = self.relative_attention_bias(relative_position_bucket) |
|
values = values.permute([2, 0, 1]).unsqueeze(0) |
|
return values |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
mask=None, |
|
key_value_states=None, |
|
position_bias=None, |
|
past_key_value=None, |
|
layer_head_mask=None, |
|
query_length=None, |
|
use_cache=False, |
|
output_attentions=False, |
|
relative_position=None, |
|
struct_position_bias=None, |
|
): |
|
""" |
|
Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states). |
|
""" |
|
|
|
|
|
|
|
batch_size, seq_length = hidden_states.shape[:2] |
|
|
|
|
|
real_seq_length = seq_length |
|
|
|
if past_key_value is not None: |
|
if len(past_key_value) != 2: |
|
raise ValueError( |
|
f"past_key_value should have 2 past states: keys and values. Got { len(past_key_value)} past states" |
|
) |
|
real_seq_length += past_key_value[0].shape[2] if query_length is None else query_length |
|
|
|
key_length = real_seq_length if key_value_states is None else key_value_states.shape[1] |
|
|
|
|
|
def shape(states): |
|
"""projection""" |
|
return states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2) |
|
|
|
def unshape(states): |
|
"""reshape""" |
|
return states.transpose(1, 2).contiguous().view(batch_size, -1, self.inner_dim) |
|
|
|
def project(hidden_states, proj_layer, key_value_states, past_key_value): |
|
"""projects hidden states correctly to key/query states""" |
|
if key_value_states is None: |
|
|
|
|
|
hidden_states = shape(proj_layer(hidden_states)) |
|
elif past_key_value is None: |
|
|
|
|
|
hidden_states = shape(proj_layer(key_value_states)) |
|
|
|
if past_key_value is not None: |
|
if key_value_states is None: |
|
|
|
|
|
hidden_states = torch.cat([past_key_value, hidden_states], dim=2) |
|
elif past_key_value.shape[2] != key_value_states.shape[1]: |
|
|
|
|
|
|
|
|
|
hidden_states = shape(proj_layer(key_value_states)) |
|
else: |
|
|
|
hidden_states = past_key_value |
|
return hidden_states |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
query_states = shape(self.q(hidden_states)) |
|
|
|
|
|
|
|
if self.pos_enc_type == "RoPE": |
|
|
|
|
|
key_states = project( |
|
hidden_states, self.k, key_value_states, past_key_value[0] if past_key_value is not None else None |
|
) |
|
|
|
|
|
else: |
|
key_states = project( |
|
hidden_states, self.k, key_value_states, past_key_value[0] if past_key_value is not None else None |
|
) |
|
|
|
|
|
|
|
value_states = project( |
|
hidden_states, self.v, key_value_states, past_key_value[1] if past_key_value is not None else None |
|
) |
|
|
|
attention_output_dict = {} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.pos_enc_type == "RoPE": |
|
r_seq_len = hidden_states.shape[1] |
|
r_offset = 0 |
|
|
|
if past_key_value is not None: |
|
|
|
|
|
|
|
r_offset = past_key_value[0].shape[2] |
|
r_seq_len += r_offset |
|
|
|
query_states = query_states.permute(0, 2, 1, 3) |
|
key_states = key_states.permute(0, 2, 1, 3) |
|
|
|
if self.rotary_dim is not None: |
|
|
|
k_rot = key_states[:, :, :, : self.rotary_dim] |
|
k_pass = key_states[:, :, :, self.rotary_dim :] |
|
|
|
q_rot = query_states[:, :, :, : self.rotary_dim] |
|
q_pass = query_states[:, :, :, self.rotary_dim :] |
|
|
|
sincos = fixed_pos_embedding(k_rot, 1, seq_len=r_seq_len) |
|
k_rot = apply_rotary_pos_emb(k_rot, sincos, offset=r_offset) |
|
q_rot = apply_rotary_pos_emb(q_rot, sincos, offset=r_offset) |
|
|
|
if output_attentions: |
|
scores_pass = torch.matmul( |
|
q_pass.permute(0, 2, 1, 3), |
|
k_pass.permute(0, 2, 1, 3).transpose(3, 2), |
|
) |
|
attention_output_dict["scores_pass"] = scores_pass |
|
|
|
scores_rot = torch.matmul( |
|
q_rot.permute(0, 2, 1, 3), |
|
k_rot.permute(0, 2, 1, 3).transpose(3, 2), |
|
) |
|
attention_output_dict["scores_rot"] = scores_rot |
|
|
|
key_states = torch.cat([k_rot, k_pass], dim=-1) |
|
query_states = torch.cat([q_rot, q_pass], dim=-1) |
|
else: |
|
sincos = fixed_pos_embedding(key_states, 1, seq_len=r_seq_len) |
|
key_states = apply_rotary_pos_emb(key_states, sincos, offset=r_offset) |
|
query_states = apply_rotary_pos_emb( |
|
query_states, sincos, offset=r_offset |
|
) |
|
|
|
|
|
|
|
""" |
|
inner,before_permute, key_states.shape:torch.Size([1, 2, 8, 64]) |
|
inner,before_permute, query_states.shape:torch.Size([1, 1, 8, 64]) |
|
""" |
|
|
|
query_states = query_states.permute(0, 2, 1, 3) |
|
key_states = key_states.permute(0, 2, 1, 3) |
|
|
|
|
|
""" |
|
if past_key_value is not None: |
|
print(f"past_key_value[0].shape before concat: {past_key_value[0].shape}") |
|
key_states = torch.cat([past_key_value[0], key_states], dim=2) |
|
""" |
|
|
|
|
|
|
|
|
|
""" |
|
# At decoder for 3rd token self-attn |
|
attn_type:self |
|
hidden_states.shape:torch.Size([1, 1, 128]) |
|
query_states.shape (before RoPE): torch.Size([1, 8, 1, 64]) |
|
key_states.shape (before RoPE): torch.Size([1, 8, 2, 64]) |
|
orig, key_states.shape:torch.Size([1, 8, 2, 64]) |
|
orig, query_states.shape:torch.Size([1, 8, 1, 64]) |
|
inner, key_states.shape:torch.Size([1, 8, 3, 64]) <- this should be [1, 8, 2, 64] |
|
inner, query_states.shape:torch.Size([1, 8, 1, 64]) |
|
scores.shape:torch.Size([1, 8, 1, 3]) |
|
mask.shape:torch.Size([1, 1, 1, 2]) |
|
""" |
|
|
|
|
|
scores = torch.matmul( |
|
query_states, key_states.transpose(3, 2) |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if mask is not None: |
|
|
|
|
|
|
|
expanded_mask = mask.expand_as(scores) |
|
|
|
|
|
|
|
scores += expanded_mask |
|
|
|
|
|
|
|
|
|
else: |
|
|
|
scores = torch.matmul( |
|
query_states, key_states.transpose(3, 2) |
|
) |
|
|
|
|
|
|
|
|
|
|
|
if self.struct_attn_type == "rpe_sbias": |
|
if struct_position_bias is None: |
|
if not self.has_relative_attention_bias: |
|
|
|
struct_position_bias = torch.zeros( |
|
(1, self.n_heads, real_seq_length, key_length), device=scores.device, dtype=scores.dtype |
|
) |
|
if self.gradient_checkpointing and self.training: |
|
struct_position_bias.requires_grad = True |
|
else: |
|
struct_position_bias = self.compute_struct_bias(real_seq_length, key_length, device=scores.device, relative_position=relative_position) |
|
|
|
|
|
|
|
if past_key_value is not None: |
|
struct_position_bias = struct_position_bias[:, :, -hidden_states.size(1) :, :] |
|
|
|
|
|
|
|
if mask is not None: |
|
|
|
|
|
struct_position_bias = struct_position_bias + mask |
|
|
|
|
|
|
|
if self.pruned_heads: |
|
mask = torch.ones(struct_position_bias.shape[1]) |
|
mask[list(self.pruned_heads)] = 0 |
|
struct_position_bias_masked = struct_position_bias[:, mask.bool()] |
|
else: |
|
struct_position_bias_masked = struct_position_bias |
|
|
|
|
|
|
|
|
|
if position_bias is None: |
|
if not self.has_relative_attention_bias: |
|
|
|
position_bias = torch.zeros( |
|
(1, self.n_heads, real_seq_length, key_length), device=scores.device, dtype=scores.dtype |
|
) |
|
if self.gradient_checkpointing and self.training: |
|
position_bias.requires_grad = True |
|
else: |
|
if self.pos_enc_type in ["Alibi","APEAlibi"]: |
|
position_bias = self.compute_bias(real_seq_length, key_length, device=scores.device, relative_position=relative_position) |
|
else: |
|
if self.struct_attn_type == "rpe_sbias": |
|
position_bias = self.compute_bias(real_seq_length, key_length, device=scores.device, relative_position=None) |
|
else: |
|
position_bias = self.compute_bias(real_seq_length, key_length, device=scores.device, relative_position=None) |
|
|
|
|
|
|
|
|
|
if past_key_value is not None: |
|
position_bias = position_bias[:, :, -hidden_states.size(1) :, :] |
|
|
|
|
|
|
|
|
|
|
|
if mask is not None: |
|
|
|
|
|
position_bias = position_bias + mask |
|
|
|
|
|
|
|
|
|
|
|
if self.pruned_heads: |
|
mask = torch.ones(position_bias.shape[1]) |
|
mask[list(self.pruned_heads)] = 0 |
|
position_bias_masked = position_bias[:, mask.bool()] |
|
else: |
|
position_bias_masked = position_bias |
|
|
|
|
|
|
|
|
|
|
|
if self.struct_attn_type == "rpe_sbias" and self.attn_type == "self": |
|
scores += position_bias_masked + struct_position_bias_masked |
|
else: |
|
scores += position_bias_masked |
|
|
|
attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as( |
|
scores |
|
) |
|
attn_weights = nn.functional.dropout( |
|
attn_weights, p=self.dropout, training=self.training |
|
) |
|
|
|
|
|
if layer_head_mask is not None: |
|
attn_weights = attn_weights * layer_head_mask |
|
|
|
attn_output = unshape(torch.matmul(attn_weights, value_states)) |
|
attn_output = self.o(attn_output) |
|
|
|
present_key_value_state = (key_states, value_states) if (self.is_decoder and use_cache) else None |
|
""" |
|
if self.struct_attn_type == "rpe_sbias": |
|
outputs = (attn_output,) + (present_key_value_state,) + (position_bias,) + (struct_position_bias,) |
|
else: |
|
outputs = (attn_output,) + (present_key_value_state,) + (position_bias,) |
|
""" |
|
|
|
outputs = (attn_output,) + (present_key_value_state,) + (position_bias,) + (struct_position_bias,) |
|
|
|
if output_attentions: |
|
outputs = outputs + (attn_weights,) |
|
return outputs |
|
|
|
|
|
from transformers.models.t5.modeling_t5 import T5LayerSelfAttention, T5LayerCrossAttention |
|
import copy |
|
|
|
class CustomT5LayerSelfAttention(T5LayerSelfAttention): |
|
def __init__(self, config, has_relative_attention_bias=False, pos_enc_type="RPE", rpe_type="abs"): |
|
super().__init__(config, has_relative_attention_bias) |
|
self.pos_enc_type=pos_enc_type |
|
self.rpe_type=rpe_type |
|
self.SelfAttention = CustomT5Attention(config, has_relative_attention_bias=has_relative_attention_bias, pos_enc_type=pos_enc_type, attn_type="self", rpe_type=rpe_type) |
|
self.is_decoder = config.is_decoder |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask=None, |
|
position_bias=None, |
|
layer_head_mask=None, |
|
past_key_value=None, |
|
use_cache=False, |
|
output_attentions=False, |
|
relative_position=None, |
|
struct_position_bias=None, |
|
): |
|
normed_hidden_states = self.layer_norm(hidden_states) |
|
attention_output = self.SelfAttention( |
|
normed_hidden_states, |
|
mask=attention_mask, |
|
position_bias=position_bias, |
|
struct_position_bias=struct_position_bias, |
|
layer_head_mask=layer_head_mask, |
|
past_key_value=past_key_value, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
relative_position=relative_position, |
|
) |
|
hidden_states = hidden_states + self.dropout(attention_output[0]) |
|
outputs = (hidden_states,) + attention_output[1:] |
|
return outputs |
|
|
|
class CustomT5LayerCrossAttention(T5LayerCrossAttention): |
|
def __init__(self, config, pos_enc_type="RPE", rpe_type="abs"): |
|
super().__init__(config) |
|
self.pos_enc_type=pos_enc_type |
|
self.rpe_type=rpe_type |
|
self.EncDecAttention = CustomT5Attention(config, has_relative_attention_bias=False, pos_enc_type=pos_enc_type, attn_type="cross", rpe_type=rpe_type) |
|
self.is_decoder = config.is_decoder |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
key_value_states, |
|
attention_mask=None, |
|
position_bias=None, |
|
layer_head_mask=None, |
|
past_key_value=None, |
|
use_cache=False, |
|
query_length=None, |
|
output_attentions=False, |
|
relative_position=None, |
|
struct_position_bias=None, |
|
): |
|
normed_hidden_states = self.layer_norm(hidden_states) |
|
attention_output = self.EncDecAttention( |
|
normed_hidden_states, |
|
mask=attention_mask, |
|
key_value_states=key_value_states, |
|
position_bias=position_bias, |
|
layer_head_mask=layer_head_mask, |
|
past_key_value=past_key_value, |
|
use_cache=use_cache, |
|
query_length=query_length, |
|
output_attentions=output_attentions, |
|
relative_position=relative_position, |
|
struct_position_bias=struct_position_bias, |
|
) |
|
layer_output = hidden_states + self.dropout(attention_output[0]) |
|
outputs = (layer_output,) + attention_output[1:] |
|
return outputs |
|
|
|
from transformers.models.t5.modeling_t5 import T5Block, T5LayerFF |
|
|
|
class CustomT5Block(T5Block): |
|
def __init__(self, config, has_relative_attention_bias=False, pos_enc_type="RPE", rpe_type="abs"): |
|
super().__init__(config, has_relative_attention_bias) |
|
self.pos_enc_type=pos_enc_type |
|
self.rpe_type=rpe_type |
|
self.layer = nn.ModuleList() |
|
self.layer.append(CustomT5LayerSelfAttention(config, has_relative_attention_bias=has_relative_attention_bias, pos_enc_type=pos_enc_type, rpe_type=rpe_type)) |
|
if self.is_decoder: |
|
self.layer.append(CustomT5LayerCrossAttention(config, pos_enc_type=pos_enc_type, rpe_type=rpe_type)) |
|
self.layer.append(T5LayerFF(config)) |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask=None, |
|
position_bias=None, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
encoder_decoder_position_bias=None, |
|
encoder_decoder_struct_position_bias=None, |
|
layer_head_mask=None, |
|
cross_attn_layer_head_mask=None, |
|
past_key_value=None, |
|
use_cache=False, |
|
output_attentions=False, |
|
return_dict=True, |
|
relative_position=None, |
|
struct_position_bias=None, |
|
): |
|
if past_key_value is not None: |
|
if not self.is_decoder: |
|
logger.warning("`past_key_values` is passed to the encoder. Please make sure this is intended.") |
|
expected_num_past_key_values = 2 if encoder_hidden_states is None else 4 |
|
|
|
if len(past_key_value) != expected_num_past_key_values: |
|
raise ValueError( |
|
f"There should be {expected_num_past_key_values} past states. " |
|
f"{'2 (key / value) for cross attention. ' if expected_num_past_key_values == 4 else ''}" |
|
f"Got {len(past_key_value)} past key / value states" |
|
) |
|
|
|
self_attn_past_key_value = past_key_value[:2] |
|
cross_attn_past_key_value = past_key_value[2:] |
|
else: |
|
self_attn_past_key_value, cross_attn_past_key_value = None, None |
|
|
|
self_attention_outputs = self.layer[0]( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
position_bias=position_bias, |
|
layer_head_mask=layer_head_mask, |
|
past_key_value=self_attn_past_key_value, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
relative_position=relative_position, |
|
struct_position_bias=struct_position_bias, |
|
) |
|
hidden_states, present_key_value_state = self_attention_outputs[:2] |
|
attention_outputs = self_attention_outputs[2:] |
|
|
|
|
|
if hidden_states.dtype == torch.float16: |
|
clamp_value = torch.where( |
|
torch.isinf(hidden_states).any(), |
|
torch.finfo(hidden_states.dtype).max - 1000, |
|
torch.finfo(hidden_states.dtype).max, |
|
) |
|
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) |
|
|
|
do_cross_attention = self.is_decoder and encoder_hidden_states is not None |
|
if do_cross_attention: |
|
|
|
|
|
if present_key_value_state is not None: |
|
query_length = present_key_value_state[0].shape[2] |
|
else: |
|
query_length = None |
|
|
|
cross_attention_outputs = self.layer[1]( |
|
hidden_states, |
|
key_value_states=encoder_hidden_states, |
|
attention_mask=encoder_attention_mask, |
|
position_bias=encoder_decoder_position_bias, |
|
layer_head_mask=cross_attn_layer_head_mask, |
|
past_key_value=cross_attn_past_key_value, |
|
query_length=query_length, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
struct_position_bias=encoder_decoder_struct_position_bias, |
|
relative_position=relative_position, |
|
) |
|
hidden_states = cross_attention_outputs[0] |
|
|
|
|
|
if hidden_states.dtype == torch.float16: |
|
clamp_value = torch.where( |
|
torch.isinf(hidden_states).any(), |
|
torch.finfo(hidden_states.dtype).max - 1000, |
|
torch.finfo(hidden_states.dtype).max, |
|
) |
|
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) |
|
|
|
|
|
if present_key_value_state is not None: |
|
present_key_value_state = present_key_value_state + cross_attention_outputs[1] |
|
|
|
|
|
attention_outputs = attention_outputs + cross_attention_outputs[2:] |
|
|
|
|
|
hidden_states = self.layer[-1](hidden_states) |
|
|
|
|
|
if hidden_states.dtype == torch.float16: |
|
clamp_value = torch.where( |
|
torch.isinf(hidden_states).any(), |
|
torch.finfo(hidden_states.dtype).max - 1000, |
|
torch.finfo(hidden_states.dtype).max, |
|
) |
|
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) |
|
|
|
outputs = (hidden_states,) |
|
|
|
if use_cache: |
|
outputs = outputs + (present_key_value_state,) + attention_outputs |
|
else: |
|
outputs = outputs + attention_outputs |
|
|
|
return outputs |
|
|
|
|
|
from transformers.models.t5.modeling_t5 import T5Stack |
|
import numpy as np |
|
from pathlib import Path |
|
import logging |
|
import os |
|
logger = logging.getLogger("debug") |
|
|
|
class CustomT5Stack(T5Stack): |
|
def __init__(self, config, embed_tokens=None, pos_enc_type="RPE", rpe_type="abs"): |
|
super().__init__(config, embed_tokens) |
|
|
|
|
|
|
|
if "-" in pos_enc_type: |
|
pos_enc_split = pos_enc_type.split("-") |
|
self.pos_enc_type = pos_enc_split[0] |
|
self.struct_attn_type = pos_enc_split[1] |
|
else: |
|
self.pos_enc_type = pos_enc_type |
|
self.struct_attn_type = "" |
|
|
|
self.rpe_type=rpe_type |
|
self.block = nn.ModuleList( |
|
[CustomT5Block(config, has_relative_attention_bias=bool(i == 0), pos_enc_type=pos_enc_type, rpe_type=rpe_type) for i in range(config.num_layers)] |
|
) |
|
|
|
self.PE_mixer = VisionTransformerEmbedding(config.d_model, config) |
|
self.config = config |
|
|
|
if self.pos_enc_type == "LearnedAPE": |
|
self.wpe = nn.Embedding(2048, config.d_model) |
|
self.wpe.weight.data.normal_( |
|
mean=0.0, std=config.initializer_factor * 1.0 |
|
) |
|
|
|
""" |
|
parent_dir = Path(os.path.dirname(os.path.abspath(__file__))) |
|
learned_embed_file = parent_dir / "gpt_neo_125m_pos_embed.npy" |
|
if learned_embed_file.exists(): |
|
logger.info( |
|
"Loading position embedding from {}".format(learned_embed_file) |
|
) |
|
|
|
weight = np.load(str(learned_embed_file)) |
|
self.wpe.weight.data.copy_(torch.from_numpy(weight)) |
|
self.wpe.weight.requires_grad = False |
|
else: |
|
self.wpe.weight.data.normal_( |
|
mean=0.0, std=config.initializer_factor * 1.0 |
|
) |
|
""" |
|
|
|
if self.pos_enc_type == "SinusoidalAPE": |
|
self.wpe = FixedAbsolutePositionalEmbedding(config.d_model) |
|
|
|
if self.pos_enc_type in ["SinusoidalAPE2D","APEAlibi-duo","APEAlibi"]: |
|
|
|
|
|
if config.use_objidx=="yes": |
|
self.wpe_obj_enc = FixedAbsolutePositionalEmbedding(config.d_model/2) |
|
self.wpe_x_enc = FixedAbsolutePositionalEmbedding(config.d_model/4) |
|
self.wpe_y_enc = FixedAbsolutePositionalEmbedding(config.d_model/4) |
|
|
|
|
|
self.wpe_x = FixedAbsolutePositionalEmbedding(config.d_model/2) |
|
self.wpe_y = FixedAbsolutePositionalEmbedding(config.d_model/2) |
|
|
|
|
|
self.wpe = FixedAbsolutePositionalEmbedding(config.d_model) |
|
|
|
if self.pos_enc_type in ["Alibi-duo", "Alibi", "APEAlibi-duo", "APEAlibi"]: |
|
|
|
grid_height = self.config.grid_max_height |
|
grid_width = self.config.grid_max_width |
|
large_dist = max(grid_height,grid_width)+2 |
|
relative_position_2d = self.calculate_2d_relative_positions(grid_height, grid_width) |
|
|
|
|
|
total_length = grid_height * grid_width + 2 |
|
distance_matrix = torch.full((total_length, total_length), fill_value=large_dist) |
|
|
|
|
|
distance_matrix[1:1 + grid_height * grid_width, 1:1 + grid_height * grid_width] = relative_position_2d |
|
|
|
|
|
distance_matrix[0, :] = large_dist |
|
distance_matrix[:, 0] = large_dist |
|
distance_matrix[-1, :] = large_dist+1 |
|
distance_matrix[:, -1] = large_dist+1 |
|
|
|
self.distance_matrix_2D = distance_matrix |
|
|
|
|
|
def calculate_2d_relative_positions(self, grid_height, grid_width): |
|
|
|
x_coords, y_coords = torch.meshgrid( |
|
torch.arange(grid_height, dtype=torch.long), |
|
torch.arange(grid_width, dtype=torch.long), |
|
indexing='ij' |
|
) |
|
|
|
|
|
x_flat = x_coords.flatten() |
|
y_flat = y_coords.flatten() |
|
|
|
|
|
num_positions = grid_height * grid_width |
|
relative_position = torch.zeros((num_positions, num_positions), dtype=torch.long) |
|
|
|
|
|
for i in range(num_positions): |
|
for j in range(num_positions): |
|
relative_position[i, j] = abs(x_flat[i] - x_flat[j]) + abs(y_flat[i] - y_flat[j]) |
|
|
|
return relative_position |
|
|
|
|
|
def forward( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
inputs_embeds=None, |
|
head_mask=None, |
|
cross_attn_head_mask=None, |
|
past_key_values=None, |
|
use_cache=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
position_ids=None, |
|
return_dict=None, |
|
relative_position=None, |
|
object_idx=None, |
|
): |
|
|
|
if self.model_parallel: |
|
torch.cuda.set_device(self.first_device) |
|
self.embed_tokens = self.embed_tokens.to(self.first_device) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
err_msg_prefix = "decoder_" if self.is_decoder else "" |
|
raise ValueError( |
|
f"You cannot specify both {err_msg_prefix}input_ids and {err_msg_prefix}inputs_embeds at the same time" |
|
) |
|
elif input_ids is not None: |
|
input_shape = input_ids.size() |
|
input_ids = input_ids.view(-1, input_shape[-1]) |
|
elif inputs_embeds is not None: |
|
input_shape = inputs_embeds.size()[:-1] |
|
else: |
|
err_msg_prefix = "decoder_" if self.is_decoder else "" |
|
raise ValueError(f"You have to specify either {err_msg_prefix}input_ids or {err_msg_prefix}inputs_embeds") |
|
|
|
if self.pos_enc_type in ["Alibi-duo", "Alibi", "APEAlibi-duo", "APEAlibi"]: |
|
relative_position = self.distance_matrix_2D |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if inputs_embeds is None: |
|
if self.embed_tokens is None: |
|
raise ValueError("You have to initialize the model with valid token embeddings") |
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
|
|
|
|
batch_size, seq_length = input_shape |
|
|
|
|
|
mask_seq_length = past_key_values[0][0].shape[2] + seq_length if past_key_values is not None else seq_length |
|
|
|
|
|
|
|
|
|
if self.pos_enc_type in [ |
|
"SinusoidalAPE2D","APEAlibi-duo","APEAlibi" |
|
]: |
|
if self.is_decoder or self.config.use_objidx!="yes": |
|
if position_ids is not None: |
|
position_ids = position_ids.view(-1, input_shape[-1]) |
|
|
|
if past_key_values is None: |
|
past_length = 0 |
|
else: |
|
past_length = past_key_values[0][0].size(-2) |
|
|
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
if position_ids is None: |
|
position_ids = torch.arange( |
|
past_length, |
|
input_shape[-1] + past_length, |
|
dtype=torch.long, |
|
device=device, |
|
) |
|
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1]) |
|
|
|
|
|
|
|
|
|
if position_ids.shape[-1] == 1024 or position_ids.shape[-1] == 1025 or True: |
|
|
|
|
|
|
|
rows = self.config.grid_max_height |
|
cols = self.config.grid_max_width |
|
|
|
|
|
flat_position_ids = position_ids.view(-1) |
|
|
|
|
|
|
|
|
|
position_ids_x = torch.arange(cols, device=device).repeat(rows) |
|
|
|
|
|
position_ids_y = torch.arange(rows, device=device).repeat_interleave(cols) |
|
|
|
|
|
batch_size = position_ids.shape[0] |
|
position_ids_x = position_ids_x.repeat(batch_size, 1) |
|
position_ids_y = position_ids_y.repeat(batch_size, 1) |
|
|
|
|
|
position_embeds_x = self.wpe_x(position_ids_x) |
|
position_embeds_y = self.wpe_y(position_ids_y) |
|
|
|
|
|
|
|
position_embeds_2d = torch.cat((position_embeds_x, position_embeds_y), dim=-1) |
|
|
|
position_embeds_1d = self.wpe(position_ids) |
|
if self.is_decoder: |
|
|
|
position_embeds = position_embeds_1d.clone() |
|
|
|
|
|
p_seq_len = position_ids.shape[-1] |
|
|
|
if p_seq_len >= 1123: |
|
position_embeds[:, 1:1123] = position_embeds_2d[:, :1122] |
|
elif p_seq_len == 1: |
|
pos_index = flat_position_ids[0] |
|
if pos_index == 0: |
|
|
|
pass |
|
elif pos_index>1 and pos_index<=1122: |
|
|
|
position_embeds[:, 0] = position_embeds_2d[:, pos_index-1] |
|
else: |
|
|
|
pass |
|
else: |
|
|
|
|
|
|
|
|
|
position_embeds[:, 1:p_seq_len] = position_embeds_2d[:, :p_seq_len-1] |
|
else: |
|
position_embeds = position_embeds_1d.clone() |
|
position_embeds[:, 1:1123] = position_embeds_2d[:, :1122] |
|
else: |
|
|
|
position_embeds = self.wpe(position_ids) |
|
else: |
|
|
|
if position_ids is not None: |
|
position_ids = position_ids.view(-1, input_shape[-1]) |
|
|
|
if past_key_values is None: |
|
past_length = 0 |
|
else: |
|
past_length = past_key_values[0][0].size(-2) |
|
|
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
if position_ids is None: |
|
position_ids = torch.arange( |
|
past_length, |
|
input_shape[-1] + past_length, |
|
dtype=torch.long, |
|
device=device, |
|
) |
|
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1]) |
|
|
|
|
|
|
|
|
|
if position_ids.shape[-1] == 1024 or position_ids.shape[-1] == 1025 or True: |
|
|
|
|
|
|
|
rows = self.config.grid_max_height |
|
cols = self.config.grid_max_width |
|
|
|
|
|
flat_position_ids = position_ids.view(-1) |
|
|
|
|
|
|
|
|
|
position_ids_x = torch.arange(cols, device=device).repeat(rows) |
|
|
|
|
|
position_ids_y = torch.arange(rows, device=device).repeat_interleave(cols) |
|
|
|
|
|
batch_size = position_ids.shape[0] |
|
position_ids_x = position_ids_x.repeat(batch_size, 1) |
|
position_ids_y = position_ids_y.repeat(batch_size, 1) |
|
|
|
|
|
object_embeds = self.wpe_obj_enc(object_idx[:, 1:-1]) |
|
|
|
|
|
|
|
|
|
position_embeds_x = self.wpe_x_enc(position_ids_x) |
|
|
|
|
|
position_embeds_y = self.wpe_y_enc(position_ids_y) |
|
|
|
|
|
position_embeds_x = position_embeds_x.expand(object_embeds.size(0), -1, -1) |
|
position_embeds_y = position_embeds_y.expand(object_embeds.size(0), -1, -1) |
|
|
|
|
|
|
|
position_embeds_2d = torch.cat((object_embeds, position_embeds_x, position_embeds_y), dim=-1) |
|
|
|
|
|
position_embeds_1d = self.wpe(position_ids) |
|
position_embeds_1d = position_embeds_1d.expand(object_embeds.size(0), -1, -1) |
|
|
|
position_embeds = position_embeds_1d.clone() |
|
position_embeds[:, 1:1123] = position_embeds_2d[:, :1122] |
|
else: |
|
|
|
position_embeds = self.wpe(position_ids) |
|
|
|
|
|
|
|
|
|
inputs_embeds = self.PE_mixer(inputs_embeds, position_embeds) |
|
|
|
if self.pos_enc_type in [ |
|
"SinusoidalAPE", |
|
"LearnedAPE", |
|
]: |
|
if position_ids is not None: |
|
position_ids = position_ids.view(-1, input_shape[-1]) |
|
|
|
if past_key_values is None: |
|
past_length = 0 |
|
else: |
|
past_length = past_key_values[0][0].size(-2) |
|
|
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
if position_ids is None: |
|
position_ids = torch.arange( |
|
past_length, |
|
input_shape[-1] + past_length, |
|
dtype=torch.long, |
|
device=device, |
|
) |
|
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1]) |
|
|
|
|
|
position_embeds = self.wpe(position_ids) |
|
|
|
inputs_embeds += position_embeds |
|
|
|
if self.struct_attn_type == "ape_sbias": |
|
|
|
if relative_position is not None: |
|
struct_position_ids = relative_position.view(-1, input_shape[-1]) |
|
|
|
|
|
|
|
struct_position_embeds = self.wpe(struct_position_ids) |
|
|
|
inputs_embeds += struct_position_embeds |
|
|
|
if use_cache is True: |
|
if not self.is_decoder: |
|
raise ValueError(f"`use_cache` can only be set to `True` if {self} is used as a decoder") |
|
|
|
|
|
if past_key_values is None: |
|
past_key_values = [None] * len(self.block) |
|
|
|
if attention_mask is None: |
|
attention_mask = torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device) |
|
|
|
|
|
|
|
extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape) |
|
|
|
|
|
|
|
if self.is_decoder and encoder_hidden_states is not None: |
|
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() |
|
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) |
|
if encoder_attention_mask is None: |
|
encoder_attention_mask = torch.ones( |
|
encoder_hidden_shape, device=inputs_embeds.device, dtype=torch.long |
|
) |
|
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) |
|
else: |
|
encoder_extended_attention_mask = None |
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
|
|
head_mask = self.get_head_mask(head_mask, self.config.num_layers) |
|
cross_attn_head_mask = self.get_head_mask(cross_attn_head_mask, self.config.num_layers) |
|
present_key_value_states = () if use_cache else None |
|
all_hidden_states = () if output_hidden_states else None |
|
all_attentions = () if output_attentions else None |
|
all_cross_attentions = () if (output_attentions and self.is_decoder) else None |
|
position_bias = None |
|
struct_position_bias = None |
|
encoder_decoder_position_bias = None |
|
encoder_decoder_struct_position_bias = None |
|
|
|
hidden_states = self.dropout(inputs_embeds) |
|
|
|
for i, (layer_module, past_key_value) in enumerate(zip(self.block, past_key_values)): |
|
layer_head_mask = head_mask[i] |
|
cross_attn_layer_head_mask = cross_attn_head_mask[i] |
|
|
|
if self.model_parallel: |
|
torch.cuda.set_device(hidden_states.device) |
|
|
|
if attention_mask is not None: |
|
attention_mask = attention_mask.to(hidden_states.device) |
|
if position_bias is not None: |
|
position_bias = position_bias.to(hidden_states.device) |
|
if struct_position_bias is not None: |
|
struct_position_bias = struct_position_bias.to(hidden_states.device) |
|
if encoder_hidden_states is not None: |
|
encoder_hidden_states = encoder_hidden_states.to(hidden_states.device) |
|
if encoder_extended_attention_mask is not None: |
|
encoder_extended_attention_mask = encoder_extended_attention_mask.to(hidden_states.device) |
|
if encoder_decoder_position_bias is not None: |
|
encoder_decoder_position_bias = encoder_decoder_position_bias.to(hidden_states.device) |
|
if encoder_decoder_struct_position_bias is not None: |
|
encoder_decoder_struct_position_bias = encoder_decoder_struct_position_bias.to(hidden_states.device) |
|
if layer_head_mask is not None: |
|
layer_head_mask = layer_head_mask.to(hidden_states.device) |
|
if cross_attn_layer_head_mask is not None: |
|
cross_attn_layer_head_mask = cross_attn_layer_head_mask.to(hidden_states.device) |
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
layer_outputs = self._gradient_checkpointing_func( |
|
layer_module.forward, |
|
hidden_states, |
|
extended_attention_mask, |
|
position_bias, |
|
encoder_hidden_states, |
|
encoder_extended_attention_mask, |
|
encoder_decoder_position_bias, |
|
layer_head_mask, |
|
cross_attn_layer_head_mask, |
|
None, |
|
use_cache, |
|
output_attentions, |
|
) |
|
else: |
|
layer_outputs = layer_module( |
|
hidden_states, |
|
attention_mask=extended_attention_mask, |
|
position_bias=position_bias, |
|
struct_position_bias=struct_position_bias, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_extended_attention_mask, |
|
encoder_decoder_position_bias=encoder_decoder_position_bias, |
|
encoder_decoder_struct_position_bias=encoder_decoder_struct_position_bias, |
|
layer_head_mask=layer_head_mask, |
|
cross_attn_layer_head_mask=cross_attn_layer_head_mask, |
|
past_key_value=past_key_value, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
relative_position=relative_position, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
if use_cache is False: |
|
layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:] |
|
|
|
hidden_states, present_key_value_state = layer_outputs[:2] |
|
|
|
|
|
|
|
|
|
position_bias = layer_outputs[2] |
|
struct_position_bias = layer_outputs[3] |
|
if self.is_decoder and encoder_hidden_states is not None: |
|
encoder_decoder_position_bias = layer_outputs[5 if output_attentions else 4] |
|
encoder_decoder_struct_position_bias = layer_outputs[7 if output_attentions else 5] |
|
|
|
|
|
if use_cache: |
|
present_key_value_states = present_key_value_states + (present_key_value_state,) |
|
|
|
""" |
|
if output_attentions: |
|
all_attentions = all_attentions + (layer_outputs[3],) |
|
if self.is_decoder: |
|
all_cross_attentions = all_cross_attentions + (layer_outputs[5],) |
|
""" |
|
|
|
if output_attentions: |
|
all_attentions = all_attentions + (layer_outputs[4],) |
|
if self.is_decoder: |
|
all_cross_attentions = all_cross_attentions + (layer_outputs[6],) |
|
|
|
|
|
if self.model_parallel: |
|
for k, v in self.device_map.items(): |
|
if i == v[-1] and "cuda:" + str(k) != self.last_device: |
|
hidden_states = hidden_states.to("cuda:" + str(k + 1)) |
|
|
|
hidden_states = self.final_layer_norm(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
|
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple( |
|
v |
|
for v in [ |
|
hidden_states, |
|
present_key_value_states, |
|
all_hidden_states, |
|
all_attentions, |
|
all_cross_attentions, |
|
] |
|
if v is not None |
|
) |
|
return BaseModelOutputWithPastAndCrossAttentions( |
|
last_hidden_state=hidden_states, |
|
past_key_values=present_key_value_states, |
|
hidden_states=all_hidden_states, |
|
attentions=all_attentions, |
|
cross_attentions=all_cross_attentions, |
|
) |
|
|
|
|
|
from transformers.models.t5.modeling_t5 import T5ForConditionalGeneration, T5Config |
|
|
|
import copy |
|
import math |
|
import os |
|
import warnings |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import torch |
|
from torch import nn |
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss |
|
|
|
from transformers.activations import ACT2FN |
|
from transformers.modeling_outputs import ( |
|
BaseModelOutput, |
|
BaseModelOutputWithPastAndCrossAttentions, |
|
Seq2SeqLMOutput, |
|
Seq2SeqModelOutput, |
|
Seq2SeqQuestionAnsweringModelOutput, |
|
Seq2SeqSequenceClassifierOutput, |
|
TokenClassifierOutput, |
|
) |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS, find_pruneable_heads_and_indices, prune_linear_layer |
|
from transformers.utils import ( |
|
DUMMY_INPUTS, |
|
DUMMY_MASK, |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
is_torch_fx_proxy, |
|
logging, |
|
replace_return_docstrings, |
|
) |
|
from transformers.utils.model_parallel_utils import assert_device_map, get_device_map |
|
from transformers.models.t5.configuration_t5 import T5Config |
|
|
|
|
|
__HEAD_MASK_WARNING_MSG = """ |
|
The input argument `head_mask` was split into two arguments `head_mask` and `decoder_head_mask`. Currently, |
|
`decoder_head_mask` is set to copy `head_mask`, but this feature is deprecated and will be removed in future versions. |
|
If you do not want to use any `decoder_head_mask` now, please set `decoder_head_mask = torch.ones(num_layers, |
|
num_heads)`. |
|
""" |
|
|
|
class CustomT5ForConditionalGeneration(T5ForConditionalGeneration): |
|
def __init__(self, config: T5Config, pos_enc_type="RPE", rpe_type="abs"): |
|
super().__init__(config) |
|
self.model_dim = config.d_model |
|
self.pos_enc_type=pos_enc_type |
|
self.rpe_type=rpe_type |
|
|
|
self.shared = nn.Embedding(config.vocab_size, config.d_model) |
|
|
|
encoder_config = copy.deepcopy(config) |
|
encoder_config.is_decoder = False |
|
encoder_config.use_cache = False |
|
encoder_config.is_encoder_decoder = False |
|
self.encoder = CustomT5Stack(encoder_config, self.shared, pos_enc_type=pos_enc_type, rpe_type=rpe_type) |
|
|
|
decoder_config = copy.deepcopy(config) |
|
decoder_config.is_decoder = True |
|
decoder_config.is_encoder_decoder = False |
|
decoder_config.num_layers = config.num_decoder_layers |
|
self.decoder = CustomT5Stack(decoder_config, self.shared, pos_enc_type=pos_enc_type, rpe_type=rpe_type) |
|
|
|
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
|
|
self.model_parallel = False |
|
self.device_map = None |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
decoder_input_ids: Optional[torch.LongTensor] = None, |
|
decoder_attention_mask: Optional[torch.BoolTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
decoder_head_mask: Optional[torch.FloatTensor] = None, |
|
cross_attn_head_mask: Optional[torch.Tensor] = None, |
|
encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
decoder_inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
|
|
distance_matrix: Optional[torch.FloatTensor] = None, |
|
object_idx: Optional[torch.FloatTensor] = None, |
|
|
|
|
|
|
|
) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the sequence classification/regression loss. Indices should be in `[-100, 0, ..., |
|
config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for |
|
labels in `[0, ..., config.vocab_size]` |
|
|
|
Returns: |
|
|
|
Examples: |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer, T5ForConditionalGeneration |
|
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-small") |
|
>>> model = T5ForConditionalGeneration.from_pretrained("google-t5/t5-small") |
|
|
|
>>> # training |
|
>>> input_ids = tokenizer("The <extra_id_0> walks in <extra_id_1> park", return_tensors="pt").input_ids |
|
>>> labels = tokenizer("<extra_id_0> cute dog <extra_id_1> the <extra_id_2>", return_tensors="pt").input_ids |
|
>>> outputs = model(input_ids=input_ids, labels=labels) |
|
>>> loss = outputs.loss |
|
>>> logits = outputs.logits |
|
|
|
>>> # inference |
|
>>> input_ids = tokenizer( |
|
... "summarize: studies have shown that owning a dog is good for you", return_tensors="pt" |
|
... ).input_ids # Batch size 1 |
|
>>> outputs = model.generate(input_ids) |
|
>>> print(tokenizer.decode(outputs[0], skip_special_tokens=True)) |
|
>>> # studies have shown that owning a dog is good for you. |
|
```""" |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
if head_mask is not None and decoder_head_mask is None: |
|
if self.config.num_layers == self.config.num_decoder_layers: |
|
warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning) |
|
decoder_head_mask = head_mask |
|
|
|
|
|
if encoder_outputs is None: |
|
|
|
encoder_outputs = self.encoder( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
inputs_embeds=inputs_embeds, |
|
head_mask=head_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
relative_position=distance_matrix, |
|
object_idx=object_idx, |
|
) |
|
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): |
|
encoder_outputs = BaseModelOutput( |
|
last_hidden_state=encoder_outputs[0], |
|
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, |
|
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, |
|
) |
|
|
|
hidden_states = encoder_outputs[0] |
|
|
|
if self.model_parallel: |
|
torch.cuda.set_device(self.decoder.first_device) |
|
|
|
if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None: |
|
|
|
decoder_input_ids = self._shift_right(labels) |
|
|
|
|
|
if self.model_parallel: |
|
torch.cuda.set_device(self.decoder.first_device) |
|
hidden_states = hidden_states.to(self.decoder.first_device) |
|
if decoder_input_ids is not None: |
|
decoder_input_ids = decoder_input_ids.to(self.decoder.first_device) |
|
if attention_mask is not None: |
|
attention_mask = attention_mask.to(self.decoder.first_device) |
|
if decoder_attention_mask is not None: |
|
decoder_attention_mask = decoder_attention_mask.to(self.decoder.first_device) |
|
|
|
|
|
decoder_outputs = self.decoder( |
|
input_ids=decoder_input_ids, |
|
attention_mask=decoder_attention_mask, |
|
inputs_embeds=decoder_inputs_embeds, |
|
past_key_values=past_key_values, |
|
encoder_hidden_states=hidden_states, |
|
encoder_attention_mask=attention_mask, |
|
head_mask=decoder_head_mask, |
|
cross_attn_head_mask=cross_attn_head_mask, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
sequence_output = decoder_outputs[0] |
|
|
|
|
|
if self.model_parallel: |
|
torch.cuda.set_device(self.encoder.first_device) |
|
self.lm_head = self.lm_head.to(self.encoder.first_device) |
|
sequence_output = sequence_output.to(self.lm_head.weight.device) |
|
|
|
if self.config.tie_word_embeddings: |
|
|
|
|
|
sequence_output = sequence_output * (self.model_dim**-0.5) |
|
|
|
lm_logits = self.lm_head(sequence_output) |
|
|
|
loss = None |
|
if labels is not None: |
|
loss_fct = CrossEntropyLoss(ignore_index=-100) |
|
|
|
labels = labels.to(lm_logits.device) |
|
loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1)) |
|
|
|
|
|
if not return_dict: |
|
output = (lm_logits,) + decoder_outputs[1:] + encoder_outputs |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return Seq2SeqLMOutput( |
|
loss=loss, |
|
logits=lm_logits, |
|
past_key_values=decoder_outputs.past_key_values, |
|
decoder_hidden_states=decoder_outputs.hidden_states, |
|
decoder_attentions=decoder_outputs.attentions, |
|
cross_attentions=decoder_outputs.cross_attentions, |
|
encoder_last_hidden_state=encoder_outputs.last_hidden_state, |
|
encoder_hidden_states=encoder_outputs.hidden_states, |
|
encoder_attentions=encoder_outputs.attentions, |
|
) |
|
|