|
|
|
import matplotlib.pyplot as plt |
|
from matplotlib import colors |
|
import os |
|
import json |
|
import numpy as np |
|
|
|
|
|
|
|
" directory_path:str keeps the path containing the tasks" |
|
"tasks:list of tuples containing the the task filename and the task data " |
|
"task_idx:index of the current task in the current iteration" |
|
"task_file name:str name of the task file being processed" |
|
"task_data: dictionary containing the task data basically the input and the output grids" |
|
"input_output_pairs: list of tuples containing the input and the output grids" |
|
|
|
def load_tasks_from_directory(directory_path): |
|
tasks = [] |
|
for filename in os.listdir(directory_path): |
|
if filename.endswith(".json"): |
|
filepath = os.path.join(directory_path, filename) |
|
with open(filepath, 'r') as file: |
|
task_data = json.load(file) |
|
tasks.append((filename, task_data)) |
|
return tasks |
|
|
|
def prepare_input_output_pairs(task_data): |
|
input_output_pairs = [] |
|
for example in task_data["train"]: |
|
input_grid = np.array(example["input"], dtype=int) |
|
output_grid = np.array(example["output"], dtype=int) |
|
input_output_pairs.append((input_grid, output_grid)) |
|
return input_output_pairs |
|
|