Liyew commited on
Commit
3052d0f
·
1 Parent(s): 0122fca

Added app and model

Browse files
concept--main/GP.py ADDED
@@ -0,0 +1,387 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from collections import deque
2
+ from copy import deepcopy
3
+
4
+ class GPContext:
5
+ def __init__(self, grid):
6
+ self.grid = deepcopy(grid)
7
+ self.objects = []
8
+ self.top_object = None
9
+ self.shift = None
10
+
11
+
12
+ def extract_object(grid):
13
+ ctx = GPContext(grid)
14
+ rows, cols = len(ctx.grid), len(ctx.grid[0])
15
+ visited = [[False]*cols for _ in range(rows)]
16
+
17
+ def bfs(r, c, val):
18
+ queue = deque([(r, c)])
19
+ block = []
20
+ visited[r][c] = True
21
+ while queue:
22
+ x, y = queue.popleft()
23
+ block.append((x, y))
24
+ for dx, dy in [(-1,0), (1,0), (0,-1), (0,1)]:
25
+ nx, ny = x + dx, y + dy
26
+ if 0 <= nx < rows and 0 <= ny < cols and not visited[nx][ny] and ctx.grid[nx][ny] == val:
27
+ visited[nx][ny] = True
28
+ queue.append((nx, ny))
29
+ return block
30
+
31
+ for r in range(rows):
32
+ for c in range(cols):
33
+ if ctx.grid[r][c] != 0 and not visited[r][c]:
34
+ block = bfs(r, c, ctx.grid[r][c])
35
+ top_row = min(x for x, y in block)
36
+ value = ctx.grid[block[0][0]][block[0][1]]
37
+ ctx.objects.append((top_row, value, block))
38
+
39
+ return ctx
40
+
41
+ def sort_objects_by_column(ctx):
42
+ ctx.objects.sort(key=lambda obj: min(y for x, y in obj[2]))
43
+ return ctx
44
+
45
+ def sort_object(ctx):
46
+ ctx.objects.sort(key=lambda obj: obj[0])
47
+ return ctx
48
+ def move_right_most_object(ctx):
49
+ if not ctx.objects:
50
+ return ctx.grid
51
+
52
+ # Get rightmost object: object with largest column index
53
+ rightmost_object = max(ctx.objects, key=lambda obj: max(y for x, y in obj[2]))
54
+ _, value, block = rightmost_object
55
+
56
+ for x, y in block:
57
+ ctx.grid[x][y] = 0
58
+
59
+ shift = 0
60
+ cols = len(ctx.grid[0])
61
+ while True:
62
+ can_move = True
63
+ for x, y in block:
64
+ new_y = y + shift + 1
65
+ if new_y >= cols or ctx.grid[x][new_y] != 0:
66
+ can_move = False
67
+ break
68
+ if not can_move:
69
+ break
70
+ shift += 1
71
+
72
+ for x, y in block:
73
+ ctx.grid[x][y + shift] = value
74
+
75
+ return ctx.grid
76
+ def move_left_most_object(ctx):
77
+ if not ctx.objects:
78
+ return ctx.grid
79
+
80
+ # Get leftmost object: object with smallest column index
81
+ leftmost_object = min(ctx.objects, key=lambda obj: min(y for x, y in obj[2]))
82
+ _, value, block = leftmost_object
83
+
84
+ for x, y in block:
85
+ ctx.grid[x][y] = 0
86
+
87
+ shift = 0
88
+ while True:
89
+ can_move = True
90
+ for x, y in block:
91
+ new_y = y - (shift + 1)
92
+ if new_y < 0 or ctx.grid[x][new_y] != 0:
93
+ can_move = False
94
+ break
95
+ if not can_move:
96
+ break
97
+ shift += 1
98
+
99
+ for x, y in block:
100
+ ctx.grid[x][y - shift] = value
101
+
102
+ return ctx.grid
103
+
104
+ def move_bottom_most_object(ctx):
105
+ if not ctx.objects:
106
+ return ctx.grid
107
+
108
+ # Get bottommost object (last one in the list after sorting by top_row)
109
+ bottom_object = ctx.objects[-1]
110
+ _, value, block = bottom_object
111
+
112
+ # Remove it from the grid
113
+ for x, y in block:
114
+ ctx.grid[x][y] = 0
115
+
116
+ # Compute shift (same as top, move down)
117
+ shift = 0
118
+ rows = len(ctx.grid)
119
+ while True:
120
+ can_move = True
121
+ for x, y in block:
122
+ new_x = x + shift + 1
123
+ if new_x >= rows or ctx.grid[new_x][y] != 0:
124
+ can_move = False
125
+ break
126
+ if not can_move:
127
+ break
128
+ shift += 1
129
+
130
+ # Place object
131
+ for x, y in block:
132
+ ctx.grid[x + shift][y] = value
133
+
134
+ return ctx.grid
135
+
136
+ def move_top_most_object(ctx):
137
+ if not ctx.objects:
138
+ return ctx.grid
139
+
140
+ # Get topmost object
141
+ top_object = ctx.objects[0]
142
+ _, value, block = top_object
143
+
144
+ # Remove it from the grid
145
+ for x, y in block:
146
+ ctx.grid[x][y] = 0
147
+
148
+ # Compute shift
149
+ shift = 0
150
+ rows = len(ctx.grid)
151
+ while True:
152
+ can_move = True
153
+ for x, y in block:
154
+ new_x = x + shift + 1
155
+ if new_x >= rows or ctx.grid[new_x][y] != 0:
156
+ can_move = False
157
+ break
158
+ if not can_move:
159
+ break
160
+ shift += 1
161
+
162
+ # Place object
163
+ for x, y in block:
164
+ ctx.grid[x + shift][y] = value
165
+
166
+ return ctx.grid
167
+ def reverse_object_order(ctx):
168
+ ctx.reversed_objects = list(reversed(ctx.objects))
169
+ return ctx
170
+
171
+ # Step 3: Clear grid and place objects from top downward
172
+ def place_objects(ctx):
173
+ rows, cols = len(ctx.grid), len(ctx.grid[0])
174
+ new_grid = [[0]*cols for _ in range(rows)]
175
+ current_row = 0
176
+
177
+ for _, value, block in ctx.reversed_objects:
178
+ # Shift block so top of block aligns with current_row
179
+ min_row = min(x for x, y in block)
180
+ row_shift = current_row - min_row
181
+
182
+ # Compute height of block to update current_row
183
+ block_height = max(x for x, y in block) - min_row + 1
184
+
185
+ for x, y in block:
186
+ new_x = x + row_shift
187
+ if 0 <= new_x < rows:
188
+ new_grid[new_x][y] = value
189
+
190
+ current_row += block_height
191
+
192
+ return new_grid
193
+ from dsl import *
194
+
195
+ concept_hierarchy = {
196
+ "Above Below": {
197
+ "remove below horizontal": ["flip_horizontal", "flip_vertical"],
198
+ "Fill below the pattern": ["rotate_90", "rotate_180", "rotate_270"],
199
+ "Move object": ["extract_object", "sort_objects", "move_top_most_object","extract_object""move_bottom_most_object","move_left_most_object","move_right_most_object"],
200
+ "reverse object":[ "place_objects", "reverse_object_order","extract_object"]
201
+ },
202
+ "Clean Up": {
203
+ "Copy the grid content": ["find_center_pixel"]
204
+ }
205
+ }
206
+
207
+ primitive_function_registry = {
208
+ "move_top_most_object": move_top_most_object,
209
+ "move_bottom_most_object": move_bottom_most_object,
210
+ "move_right_most_object":move_right_most_object,
211
+ "move_left_most_object":move_left_most_object,
212
+ "extract_object": extract_object,
213
+ "sort_objects": sort_object,
214
+ "find_center_pixel":find_center_pixel,
215
+ "extract_object": extract_object,
216
+ "reverse_object_order": reverse_object_order,
217
+ "place_objects": place_objects
218
+ }
219
+
220
+ def get_sub_concepts_and_functions(high_level_concepts):
221
+ allowed_functions = []
222
+ for hlc in high_level_concepts:
223
+ sub_concepts = concept_hierarchy.get(hlc, {})
224
+ for slc_funcs in sub_concepts.values():
225
+ allowed_functions.extend(slc_funcs)
226
+ return list(set(allowed_functions))
227
+ import random
228
+
229
+ TERMINALS = ["input_grid"]
230
+
231
+ class Node:
232
+ def __init__(self, value, children=None):
233
+ self.value = value
234
+ self.children = children if children else []
235
+
236
+ def __str__(self):
237
+ if self.children:
238
+ return f"{self.value}({', '.join(str(child) for child in self.children)})"
239
+ return str(self.value)
240
+
241
+ def evaluate(self, input_grid):
242
+ if self.value == "input_grid":
243
+ return input_grid
244
+ child_values = [child.evaluate(input_grid) for child in self.children]
245
+ func = primitive_function_registry.get(self.value)
246
+ if func is None:
247
+ raise ValueError(f"Unknown function: {self.value}")
248
+ return func(*child_values)
249
+
250
+
251
+ def generate_random_program(max_depth, current_depth=0, allowed_functions=None):
252
+ if current_depth >= max_depth or (current_depth > 0 and random.random() < 0.2):
253
+ return Node(random.choice(TERMINALS))
254
+ else:
255
+ func_name = random.choice(allowed_functions) if allowed_functions else random.choice(list(primitive_function_registry.keys()))
256
+ children = [generate_random_program(max_depth, current_depth+1, allowed_functions) for _ in range(1)] # assuming arity=1
257
+ return Node(func_name, children)
258
+
259
+
260
+ def get_all_nodes(program):
261
+ nodes = [program]
262
+ for child in program.children:
263
+ nodes.extend(get_all_nodes(child))
264
+ return nodes
265
+
266
+
267
+ def crossover(parent1, parent2):
268
+ import copy
269
+ child1, child2 = copy.deepcopy(parent1), copy.deepcopy(parent2)
270
+ nodes1, nodes2 = get_all_nodes(child1), get_all_nodes(child2)
271
+ point1, point2 = random.choice(nodes1), random.choice(nodes2)
272
+ point1.value, point1.children, point2.value, point2.children = point2.value, point2.children, point1.value, point1.children
273
+ return child1, child2
274
+
275
+
276
+ def mutation(program, max_depth, mutation_rate, allowed_functions):
277
+ import copy
278
+ mutant = copy.deepcopy(program)
279
+ nodes = get_all_nodes(mutant)
280
+ for node in nodes:
281
+ if random.random() < mutation_rate:
282
+ new_subtree = generate_random_program(max_depth=max_depth, current_depth=0, allowed_functions=allowed_functions)
283
+ node.value = new_subtree.value
284
+ node.children = new_subtree.children
285
+ return mutant
286
+
287
+
288
+ def tournament_selection(population, fitness_scores, k):
289
+ selected = []
290
+ for _ in range(len(population)):
291
+ participants = random.sample(list(zip(population, fitness_scores)), k)
292
+ winner = max(participants, key=lambda x: x[1])[0]
293
+ selected.append(winner)
294
+ return selected
295
+
296
+
297
+ class Generation:
298
+ def __init__(self, best_fitness, population):
299
+ self.best_fitness = best_fitness
300
+ self.population = population
301
+
302
+ def to_dict(self):
303
+ return {
304
+ "best_fitness": self.best_fitness,
305
+ "population": [str(ind) for ind in self.population]
306
+ }
307
+
308
+ def evaluate_fitness(program, input_output_pairs):
309
+ score = 0
310
+ for inp, expected in input_output_pairs:
311
+ try:
312
+ result = program.evaluate(inp)
313
+ if result == expected:
314
+ score += 1
315
+ except:
316
+ continue
317
+ return score
318
+
319
+
320
+ def genetic_programming(input_output_pairs, population_size, generations, mutation_rate, crossover_rate, max_depth, predicted_HLCs):
321
+ allowed_functions = get_sub_concepts_and_functions(predicted_HLCs)
322
+ population = [generate_random_program(max_depth, allowed_functions=allowed_functions) for _ in range(population_size)]
323
+ all_generations = []
324
+ best_program = None
325
+
326
+ for gen in range(generations):
327
+ fitness_scores = [evaluate_fitness(p, input_output_pairs) for p in population]
328
+ best_fitness = max(fitness_scores)
329
+ best_program = population[fitness_scores.index(best_fitness)]
330
+
331
+ selected = tournament_selection(population, fitness_scores, k=3)
332
+ next_generation = []
333
+
334
+ while len(next_generation) < population_size:
335
+ if random.random() < crossover_rate and len(selected) >= 2:
336
+ p1, p2 = random.sample(selected, 2)
337
+ c1, c2 = crossover(p1, p2)
338
+ next_generation.extend([c1, c2])
339
+ else:
340
+ parent = random.choice(selected)
341
+ child = mutation(parent, max_depth, mutation_rate, allowed_functions)
342
+ next_generation.append(child)
343
+
344
+ population = next_generation[:population_size]
345
+ all_generations.append(Generation(best_fitness, population))
346
+ print(f"Generation {gen} - Best Fitness: {best_fitness}")
347
+
348
+ return best_program, all_generations
349
+
350
+ if __name__ == "__main__":
351
+ if __name__ == "__main__":
352
+ input_output_pairs = [
353
+ (
354
+ [[0,0,0,0,0,0,0,0],
355
+ [0,3,3,3,0,0,0,0],
356
+ [0,0,0,0,0,0,0,0],
357
+ [0,4,4,4,0,0,0,0],
358
+ [0,4,4,4,0,0,0,0],
359
+ [0,4,4,4,0,0,0,0],
360
+ [0,0,0,0,0,3,3,3],
361
+ [0,0,3,3,3,0,0,0]],
362
+
363
+ [[0,0,0,0,0,0,0,0],
364
+ [0,0,0,0,0,0,0,0],
365
+ [0,3,3,3,0,0,0,0],
366
+ [0,4,4,4,0,0,0,0],
367
+ [0,4,4,4,0,0,0,0],
368
+ [0,4,4,4,0,0,0,0],
369
+ [0,0,0,0,0,3,3,3],
370
+ [0,0,3,3,3,0,0,0]]
371
+ )
372
+ ]
373
+
374
+
375
+ predicted_HLCs = ["Above Beloww"]
376
+
377
+
378
+ best_program, generations = genetic_programming(
379
+ input_output_pairs=input_output_pairs,
380
+ population_size=500,
381
+ generations=700,
382
+ mutation_rate=0.2,
383
+ crossover_rate=0.7,
384
+ max_depth=3,
385
+ predicted_HLCs=predicted_HLCs
386
+ )
387
+ print("\nBest Program:", best_program)
concept--main/Nods.py ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import random
2
+ from dsl import *
3
+ # Dictionary of DSLs or primitive functions and terminals
4
+
5
+ import random
6
+
7
+ # Dictionary of DSLs or primitive functions and terminals
8
+ FUNCTIONS_dictionary = {
9
+
10
+ 'reverse_object_top_bottom':(reverse_object_top_bottom,1),
11
+ 'flip_horizontal': (flip_horizontal, 1),
12
+ 'flip_vertical': (flip_vertical, 1),
13
+ 'rotate_90': (rotate_90, 1),
14
+ 'rotate_180': (rotate_180, 1),
15
+ 'rotate_270': (rotate_270, 1),
16
+ 'identity': (identity, 1),
17
+ 'transform_blue_to_red': (transform_blue_to_red, 1),
18
+ 'vertical_mirror': (vmirrors, 1),
19
+ 'horizontal_mirror': (hmirror, 1),
20
+ 'diagonal_mirror': (diamirror, 1),
21
+ 'find_center_pixel':(find_center_pixel,1),
22
+ 'get_object_bounds': (get_object_bounds,1),
23
+ 'reverse_object_top_bottom':(reverse_object_top_bottom,1)
24
+ # Uncommented functions (if needed)
25
+ # 'extract_largest_row': (extract_largest_row, 1),
26
+ # 'extract_bottom_object': (extract_bottom_object, 1),
27
+ # 'extract_topmost_object': (extract_topmost_object, 1),
28
+ # 'fill_downward': (fill_downward, 1),
29
+ # 'keep_bottom_object': (keep_bottom_object, 1),
30
+ # 'remove_least_dominant_pixel': (remove_least_dominant_pixel, 1),
31
+ # 'remove_center_object': (remove_center_object, 1),
32
+ # 'remove_below_horizontal_line': (remove_below_horizontal_line, 1),
33
+ # 'swap_objects': (swap_objects, 1),
34
+ # 'draw_horizontal_vertical': (draw_horizontal_vertical, 1),
35
+ }
36
+
37
+ TERMINALS = [
38
+ ('input_grid', lambda: None, 0)
39
+ ]
40
+
41
+ class Node:
42
+ _id_counter = 0
43
+
44
+ def __init__(self, value, children=None):
45
+ self.id = Node._id_counter
46
+ Node._id_counter += 1
47
+ self.value = value
48
+ self.children = children if children is not None else []
49
+
50
+ def __str__(self):
51
+ if self.children:
52
+ return f"{self.value}({', '.join(str(child) for child in self.children)})"
53
+ else:
54
+ return str(self.value)
55
+
56
+ def evaluate(self, input_grid):
57
+ if not self.children:
58
+ if self.value == "input_grid":
59
+ return input_grid
60
+ else:
61
+ raise ValueError(f"Unknown terminal: {self.value}")
62
+ else:
63
+ child_values = [child.evaluate(input_grid) for child in self.children]
64
+ func_data = FUNCTIONS_dictionary.get(self.value)
65
+ if func_data is None:
66
+ raise ValueError(f"Unknown function: {self.value}")
67
+ func, _ = func_data
68
+ return func(*child_values)
69
+
70
+ def generate_random_program(max_depth, current_depth=0):
71
+ if current_depth >= max_depth or (current_depth > 0 and random.random() < 0.2):
72
+ terminal = random.choice(TERMINALS)
73
+ return Node(terminal[0])
74
+ else:
75
+ func_name, (func, arity) = random.choice(list(FUNCTIONS_dictionary.items()))
76
+ children = [generate_random_program(max_depth, current_depth + 1) for _ in range(arity)]
77
+ return Node(func_name, children)
78
+
79
+ def get_all_nodes(program):
80
+ nodes = [program]
81
+ for child in program.children:
82
+ nodes.extend(get_all_nodes(child))
83
+ return nodes
84
+
85
+ class Generation:
86
+ def __init__(self, best_fitness, population, mutation_rate, crossover_rate, max_depth):
87
+ self.best_fitness = best_fitness
88
+ self.population = population
89
+ self.mutation_rate = mutation_rate
90
+ self.crossover_rate = crossover_rate
91
+ self.max_depth = max_depth
92
+
93
+ def to_dict(self):
94
+ return {
95
+ "best_fitness": self.best_fitness,
96
+ "population": [str(individual) for individual in self.population]
97
+ }
concept--main/Vit_concept.py ADDED
@@ -0,0 +1,153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+
3
+ import json
4
+ import torch
5
+ import torch.nn.functional as F
6
+ from transformers import AutoTokenizer, T5Config
7
+ from torch.nn import CrossEntropyLoss
8
+ from custom_t5_vit import CustomT5ForConditionalGeneration
9
+ from GP import genetic_programming
10
+ from Nods import FUNCTIONS_dictionary
11
+ from task_loader import *
12
+ import os
13
+
14
+ # Get the base directory where the current script is running
15
+ BASE_DIR = os.path.dirname(os.path.abspath(__file__))
16
+
17
+ # Build relative paths
18
+ TOKENIZER_PATH = os.path.join(BASE_DIR, "tokenizer_vs22_extendarctokens")
19
+ MODEL_SAVE_PATH_1 = os.path.join(BASE_DIR, "model", "final_cls_modell.pt")
20
+
21
+ print("Loading tokenizer from:", TOKENIZER_PATH)
22
+ print("Loading model from:", MODEL_SAVE_PATH_1)
23
+
24
+ tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_PATH)
25
+ class CustomT5Config(T5Config):
26
+ def __init__(self, PE_mix_strategy="default", use_objidx="yes",
27
+ grid_max_height=33, grid_max_width=34, **kwargs):
28
+ super().__init__(**kwargs)
29
+ self.PE_mix_strategy = PE_mix_strategy
30
+ self.use_objidx = use_objidx
31
+ self.grid_max_height = grid_max_height
32
+ self.grid_max_width = grid_max_width
33
+ config = CustomT5Config(
34
+ vocab_size=len(tokenizer),
35
+ d_model=128,
36
+ num_layers=3,
37
+ num_decoder_layers=3,
38
+ num_heads=8,
39
+ d_ff=256,
40
+ dropout_rate=0.1,
41
+ pad_token_id=tokenizer.pad_token_id,
42
+ eos_token_id=tokenizer.eos_token_id
43
+ )
44
+ class ConceptDetector(torch.nn.Module):
45
+ def __init__(self, config, num_classes):
46
+ super().__init__()
47
+ self.model = CustomT5ForConditionalGeneration(config)
48
+ self.classifier_head = torch.nn.Linear(config.d_model, num_classes)
49
+ self.loss_fn = CrossEntropyLoss()
50
+ def forward(self, input_ids, attention_mask):
51
+ encoder_outputs = self.model.encoder(
52
+ input_ids=input_ids,
53
+ attention_mask=attention_mask
54
+ )
55
+ pooled_output = encoder_outputs.last_hidden_state[:, 0, :]
56
+ logits = self.classifier_head(pooled_output)
57
+ probs = F.softmax(logits, dim=1)
58
+ return probs
59
+ def load_model(model_path):
60
+ print(f"Loading model from {model_path}...")
61
+ checkpoint = torch.load(model_path, map_location=torch.device("cpu"))
62
+ num_classes = checkpoint["classifier_head.weight"].shape[0]
63
+ print(f"Detected `num_classes`: {num_classes}")
64
+ model = ConceptDetector(config=config, num_classes=num_classes)
65
+ model.load_state_dict(checkpoint)
66
+ model.eval()
67
+ return model
68
+ model = load_model(MODEL_SAVE_PATH_1)
69
+ def replace_digits_with_arc(grid):
70
+ return [[f'<arc_{num}>' for num in row] for row in grid]
71
+ def pad_2d_list(grid, pad_token='<arc_pad>', target_size=32):
72
+ padded_grid = [row + [pad_token] * (target_size - len(row)) for row in grid]
73
+ while len(padded_grid) < target_size:
74
+ padded_grid.append([pad_token] * target_size)
75
+ return padded_grid
76
+ def reformat_arc_tokens(grid):
77
+ padded_tokens_2d = pad_2d_list(grid)
78
+ flattened_tokens = [token for row in padded_tokens_2d for token in row]
79
+ return " ".join(flattened_tokens)
80
+ def preprocess_for_inference(input_grid, output_grid):
81
+ input_grid = replace_digits_with_arc(input_grid)
82
+ output_grid = replace_digits_with_arc(output_grid)
83
+ input_tokens = "<s> Input Grid: " + reformat_arc_tokens(input_grid) + " </s>"
84
+ output_tokens = " Output Grid: " + reformat_arc_tokens(output_grid) + " </s>"
85
+ return input_tokens + output_tokens
86
+ # Concept Label Mapping
87
+ CONCEPT_LABELS = {'Above_below': 0, 'Below_row_line': 1, 'Center': 2, 'Copy': 3, 'Horizontal_vertical': 4, 'Inside_outside': 5, 'Remove_below_horizontal_line': 6}
88
+
89
+ CONCEPT_LABELS_INV = {v: k for k, v in CONCEPT_LABELS.items()}
90
+
91
+ # Map ViT Concept to GP Function
92
+ CONCEPT_TO_FUNCTION_MAP = {
93
+ 'Center': 'find_center_pixel',
94
+ 'Copy': 'identity',
95
+ 'Above_below': 'flip_horizontal',
96
+ 'color_top_part': 'flip_vertical',
97
+ 'Horizontal_vertical':'Horizontal_vertical',
98
+
99
+ }
100
+ def run_inference(model, input_grid, output_grid):
101
+ formatted_input = preprocess_for_inference(input_grid, output_grid)
102
+ encoded = tokenizer(formatted_input, return_tensors="pt")
103
+ with torch.no_grad():
104
+ probs = model(encoded["input_ids"], encoded["attention_mask"])
105
+ predicted_class_index = torch.argmax(probs, dim=1).item()
106
+ concept_label = CONCEPT_LABELS_INV.get(predicted_class_index, "Unknown Concept")
107
+ print(f"Predicted class index: {predicted_class_index}")
108
+ print(f"Predicted concept: {concept_label}")
109
+ gp_function_name = CONCEPT_TO_FUNCTION_MAP.get(concept_label, None)
110
+ if gp_function_name is None:
111
+ print(f"Warning: No matching GP function found for concept `{concept_label}`.")
112
+ return concept_label, None
113
+ mapped_function = FUNCTIONS_dictionary.get(gp_function_name, None)
114
+
115
+ return concept_label, mapped_function
116
+ if __name__ == "__main__":
117
+ # Path to your JSON file
118
+ JSON_DATA_PATH = r"C:\Users\gebre\OneDrive - GIST\문서\KakaoTalk Downloads\GPARC_concept_with_vit\GPARC\SRC\data\AboveBelow3.json"
119
+
120
+ # Load JSON data
121
+ with open(JSON_DATA_PATH, "r") as f:
122
+ data = json.load(f)
123
+
124
+ # Loop through both train and test sets
125
+ results = []
126
+
127
+ for split_name in ["train", "test"]:
128
+ if split_name in data:
129
+ print(f"\nRunning inference on `{split_name}` set...")
130
+ split_results = []
131
+ for sample in data[split_name]:
132
+ input_grid = sample["input"]
133
+ output_grid = sample["output"]
134
+ predicted_label, mapped_function = run_inference(model, input_grid, output_grid)
135
+ split_results.append({
136
+ "input": input_grid,
137
+ "output": output_grid,
138
+ "predicted_label": predicted_label,
139
+ "mapped_function": str(mapped_function) # in case it's a callable
140
+ })
141
+ results.append({
142
+ "split": split_name,
143
+ "predictions": split_results
144
+ })
145
+
146
+ # Optionally: save the result to a JSON file
147
+ with open("inference_results.json", "w") as f:
148
+ json.dump(results, f, indent=2)
149
+
150
+ print("\nInference completed. Results saved to `inference_results.json`.")
151
+
152
+
153
+
concept--main/app.py ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import json
3
+ from Vit_concept import run_inference, model
4
+ from GP import genetic_programming
5
+
6
+ st.title(" Concept Guieded GP_ARC Solver")
7
+ st.write("Upload your ARC task (JSON format) and let the system solve it.")
8
+
9
+ uploaded_file = st.file_uploader("Upload your ARC task JSON file", type=["json"])
10
+
11
+ if uploaded_file:
12
+ data = json.load(uploaded_file)
13
+
14
+ input_output_pairs = []
15
+ predicted_HLCs = []
16
+
17
+ st.write("### Running Recognition Module...")
18
+
19
+ for sample in data.get("train", []): # or 'test'
20
+ input_grid = sample["input"]
21
+ output_grid = sample["output"]
22
+
23
+ st.write("#### Input Grid:")
24
+ st.text(input_grid)
25
+ st.write("#### Output Grid:")
26
+ st.text(output_grid)
27
+
28
+ concept_label, _ = run_inference(model, input_grid, output_grid)
29
+ st.write(f" Predicted Concept: `{concept_label}`")
30
+
31
+ predicted_HLCs.append(concept_label)
32
+ input_output_pairs.append((input_grid, output_grid))
33
+
34
+ predicted_HLCs = list(set(predicted_HLCs))
35
+ st.write("### Predicted High-Level Concepts:", predicted_HLCs)
36
+
37
+ if st.button("Run Genetic Programming"):
38
+ st.write("Running Genetic Programming... (this may take a few minutes)")
39
+ best_program, generations = genetic_programming(
40
+ input_output_pairs=input_output_pairs,
41
+ population_size=300,
42
+ generations=500,
43
+ mutation_rate=0.2,
44
+ crossover_rate=0.7,
45
+ max_depth=3,
46
+ predicted_HLCs=predicted_HLCs
47
+ )
48
+ st.success(" GP Completed!")
49
+ st.write("### Best Program Found:")
50
+ st.code(str(best_program))
51
+
52
+
53
+
54
+
55
+
56
+
57
+
58
+
59
+
60
+
61
+
62
+
63
+
64
+
65
+
66
+
67
+
68
+
69
+
70
+
71
+
72
+
73
+
74
+
75
+
76
+
77
+
78
+
79
+
80
+
81
+
82
+
concept--main/custom_t5_vit.py ADDED
@@ -0,0 +1,1833 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Custom ViT from T5
2
+ # https://github.com/huggingface/transformers/blob/main/src/transformers/models/t5/modeling_t5.py
3
+
4
+ from transformers.models.t5.modeling_t5 import (
5
+ T5Model,
6
+ T5Config,
7
+ T5Stack,
8
+ T5PreTrainedModel,
9
+ T5Block,
10
+ T5LayerNorm,
11
+ T5LayerFF,
12
+ T5LayerSelfAttention,
13
+ T5Attention,
14
+ T5LayerCrossAttention,
15
+ )
16
+
17
+ from transformers.modeling_outputs import (
18
+ CausalLMOutputWithPast,
19
+ BaseModelOutputWithPastAndCrossAttentions,
20
+ SequenceClassifierOutputWithPast,
21
+ TokenClassifierOutput,
22
+ )
23
+
24
+
25
+
26
+ import math
27
+ import torch
28
+ from torch import nn
29
+ from torch.nn.parameter import Parameter
30
+ import torch.nn.functional as F
31
+ #encoder related code starts here
32
+ # Unified Vision Transformer Embedding class
33
+ class VisionTransformerEmbedding(nn.Module):
34
+ def __init__(self, embed_dim, config):
35
+ super(VisionTransformerEmbedding, self).__init__()
36
+ self.config = config
37
+ self.embed_dim = embed_dim
38
+
39
+ # Learnable scaling factors for the learnable normalization option
40
+ if self.config.PE_mix_strategy in ['learnable_scaling_vec', 'weighted_sum_vec', 'weighted_sum_no_norm_vec']:
41
+ self.position_scale = nn.Parameter(torch.ones(1, embed_dim))
42
+ self.input_weight = nn.Parameter(torch.ones(1,embed_dim))
43
+ self.position_weight = nn.Parameter(torch.ones(1,embed_dim))
44
+
45
+ if self.config.PE_mix_strategy in ['learnable_scaling', 'weighted_sum', 'weighted_sum_no_norm']:
46
+ self.position_scale = nn.Parameter(torch.ones(1))
47
+ self.input_weight = nn.Parameter(torch.ones(1))
48
+ self.position_weight = nn.Parameter(torch.ones(1))
49
+
50
+ # Positional attention mechanism for the positional attention option
51
+ if self.config.PE_mix_strategy == 'positional_attention':
52
+ self.attention = nn.MultiheadAttention(embed_dim, num_heads=8)
53
+
54
+ # Layer normalization for the layer normalization option
55
+ if self.config.PE_mix_strategy == 'layer_norm':
56
+ self.layer_norm = nn.LayerNorm(embed_dim)
57
+
58
+ def forward(self, inputs_embeds, position_embeds):
59
+ strategy = self.config.PE_mix_strategy
60
+
61
+ if strategy == 'hardcoded_normalization':
62
+ inputs_embeds_norm = F.normalize(inputs_embeds, p=2, dim=-1)
63
+ position_embeds_norm = F.normalize(position_embeds, p=2, dim=-1)
64
+ output_embeds = inputs_embeds_norm + position_embeds_norm
65
+
66
+ elif strategy in ['learnable_scaling','learnable_scaling_vec']:
67
+ scaled_position_embeds = self.position_scale * position_embeds
68
+ output_embeds = inputs_embeds + scaled_position_embeds
69
+
70
+ elif strategy in ['weighted_sum','weighted_sum_vec']:
71
+ inputs_embeds_norm = F.normalize(inputs_embeds, p=2, dim=-1)
72
+ position_embeds_norm = F.normalize(position_embeds, p=2, dim=-1)
73
+ output_embeds = (self.input_weight * inputs_embeds_norm) + (self.position_weight * position_embeds_norm)
74
+
75
+ elif strategy in ['weighted_sum_no_norm','weighted_sum_no_norm_vec']:
76
+ # Directly apply the weights without normalization
77
+ output_embeds = (self.input_weight * inputs_embeds) + (self.position_weight * position_embeds)
78
+
79
+ elif strategy == 'positional_attention':
80
+ # Expanding position_embeds to match the batch size of inputs_embeds
81
+ position_embeds_expanded = position_embeds.expand(inputs_embeds.shape[0], -1, -1)
82
+
83
+ # Ensure the inputs are in the correct shape for MultiheadAttention (3D: [seq_len, batch_size, embed_dim])
84
+ inputs_embeds_reshaped = inputs_embeds.transpose(0, 1) # [batch_size, seq_len, embed_dim] -> [seq_len, batch_size, embed_dim]
85
+ position_embeds_reshaped = position_embeds_expanded.transpose(0, 1) # [batch_size, seq_len, embed_dim] -> [seq_len, batch_size, embed_dim]
86
+
87
+ attn_output, _ = self.attention(inputs_embeds_reshaped, position_embeds_reshaped, position_embeds_reshaped)
88
+ output_embeds = inputs_embeds_reshaped + attn_output
89
+
90
+ # Transpose back to original shape
91
+ output_embeds = output_embeds.transpose(0, 1) # [seq_len, batch_size, embed_dim] -> [batch_size, seq_len, embed_dim]
92
+
93
+ elif strategy == 'layer_norm':
94
+ combined_embeds = inputs_embeds + position_embeds
95
+ # Default comes with Learnable Scaling and Shifting
96
+ output_embeds = self.layer_norm(combined_embeds)
97
+
98
+ elif strategy == 'default':
99
+ output_embeds = inputs_embeds + position_embeds
100
+
101
+ else:
102
+ raise ValueError(f"Unsupported PE_mix_strategy: {strategy}")
103
+
104
+ return output_embeds
105
+
106
+
107
+ # https://github.com/McGill-NLP/length-generalization/blob/main/src/models/custom_t5_decoder_only.py
108
+ class PositionalEmbedding(nn.Module):
109
+ def __init__(self, demb):
110
+ super().__init__()
111
+
112
+ self.demb = demb
113
+
114
+ inv_freq = 1 / (10000 ** (torch.arange(0.0, demb, 2.0) / demb))
115
+ self.register_buffer("inv_freq", inv_freq)
116
+
117
+ def forward(self, pos_seq, bsz=None):
118
+ sinusoid_inp = torch.ger(pos_seq, self.inv_freq)
119
+ pos_emb = torch.cat([sinusoid_inp.sin(), sinusoid_inp.cos()], dim=-1)
120
+
121
+ if bsz is not None:
122
+ return pos_emb[None, :, :].expand(bsz, -1, -1)
123
+ else:
124
+ return pos_emb[None, :, :]
125
+
126
+
127
+ class FixedAbsolutePositionalEmbedding(nn.Module):
128
+ def __init__(self, dim):
129
+ super().__init__()
130
+ inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim))
131
+ t = torch.arange(16384).type_as(inv_freq)
132
+ sinusoid_inp = torch.einsum("i , j -> i j", t, inv_freq)
133
+ emb = torch.cat((sinusoid_inp.sin(), sinusoid_inp.cos()), dim=-1)
134
+ self.embed = nn.Embedding.from_pretrained(emb, freeze=True)
135
+
136
+ def forward(self, position_ids: torch.Tensor):
137
+ return self.embed(position_ids.long())
138
+
139
+
140
+ class FixedRotaryPositionalEmbedding(nn.Module):
141
+ def __init__(
142
+ self, rotary_dim: int, rotary_base: int = 10000, max_position: int = 16384
143
+ ):
144
+ super().__init__()
145
+ # This is an inverse frequency tensor
146
+ # Each dimension has a higher denominator than the previous one
147
+ # So, the frequency will be lower for higher dimensions
148
+ inv_freq = 1.0 / (
149
+ rotary_base ** (torch.arange(0, rotary_dim, 2).float() / rotary_dim)
150
+ ) # [rotary_dim/2]
151
+
152
+ # Now, we create frequencies for each position
153
+ t = torch.arange(max_position, device=inv_freq.device, dtype=inv_freq.dtype)
154
+ freqs = torch.einsum("i,j->ij", t, inv_freq) # [max_position, rotary_dim/2]
155
+
156
+ sins = torch.sin(freqs)
157
+ coss = torch.cos(freqs)
158
+
159
+ emb = torch.cat([sins, coss], dim=-1) # [max_position, rotary_dim]
160
+ self.embed = nn.Embedding.from_pretrained(emb, freeze=True)
161
+
162
+ def forward(self, position_ids: torch.Tensor):
163
+ return self.embed(position_ids.long())
164
+
165
+ def fixed_pos_embedding(x, seq_dim=1, seq_len=None):
166
+ dim = x.shape[-1]
167
+ if seq_len is None:
168
+ seq_len = x.shape[seq_dim]
169
+ inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2) / dim))
170
+ sinusoid_inp = (
171
+ torch.einsum("i , j -> i j", torch.arange(seq_len), inv_freq)
172
+ .to(x.device)
173
+ .float()
174
+ )
175
+ return torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)
176
+
177
+
178
+ def rotate_every_two(x):
179
+ """
180
+ Example: [a, b, c, d] -> [-b, a, -d, c]
181
+ """
182
+ x1 = x[:, :, :, ::2]
183
+ x2 = x[:, :, :, 1::2]
184
+ x = torch.stack((-x2, x1), axis=-1)
185
+ return x.flatten(-2) # in einsum notation: rearrange(x, '... d j -> ... (d j)')
186
+
187
+
188
+ def apply_rotary_pos_emb(x, sincos, offset=0):
189
+ sin, cos = map(
190
+ lambda t: t[None, offset : x.shape[1] + offset, None, :].repeat_interleave(
191
+ 2, 3
192
+ ),
193
+ sincos,
194
+ )
195
+ # einsum notation for lambda t: repeat(t[offset:x.shape[1]+offset,:], "n d -> () n () (d j)", j=2)
196
+ return (x * cos) + (rotate_every_two(x) * sin)
197
+
198
+
199
+ def apply_rotary_pos_emb_new(x, sincos, offset=0):
200
+ sin, cos = map(
201
+ lambda t: t[:, :, None, :].repeat_interleave(2, 3),
202
+ sincos,
203
+ )
204
+ # einsum notation for lambda t: repeat(t[offset:x.shape[1]+offset,:], "n d -> () n () (d j)", j=2)
205
+ return (x * cos) + (rotate_every_two(x) * sin)
206
+
207
+
208
+ class CustomT5Attention(T5Attention):
209
+ def __init__(self, config: T5Config, has_relative_attention_bias=False, pos_enc_type="RPE", attn_type="self", rpe_type="abs"):
210
+ super().__init__(config)
211
+
212
+ #self.pos_enc_type = pos_enc_type
213
+ # Alibi-rpe_sbias
214
+ if "-" in pos_enc_type:
215
+ pos_enc_split = pos_enc_type.split("-")
216
+ self.pos_enc_type = pos_enc_split[0]
217
+ self.struct_attn_type = pos_enc_split[1]
218
+ else:
219
+ self.pos_enc_type = pos_enc_type
220
+ self.struct_attn_type = ""
221
+
222
+ self.d_head = config.d_kv
223
+ self.attn_type = attn_type
224
+ self.rpe_type = rpe_type
225
+ self.has_relative_attention_bias = has_relative_attention_bias
226
+
227
+ if self.pos_enc_type == "RoPE":
228
+ self.rotary_dim = None
229
+ if getattr(config, "rotary_dim", None) is not None:
230
+ self.rotary_dim = config.rotary_dim
231
+ self.rotary_dim = int(0.25 * self.d_head)
232
+
233
+ # Get the device from the configuration
234
+ #device = torch.device("cuda" if torch.cuda.is_available() and config.device == 'cuda' else "cpu")
235
+ if self.pos_enc_type != "RPE":
236
+ self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads)
237
+ device = self.relative_attention_bias.weight.device
238
+
239
+ #print(f"has_relative_attention_bias:{has_relative_attention_bias}")
240
+ if self.has_relative_attention_bias:
241
+ if self.pos_enc_type == "RPE":
242
+ self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads)
243
+ elif self.pos_enc_type in ["Alibi","APEAlibi"]:
244
+ #print(f"device:{device}")
245
+ if self.struct_attn_type == "duo":
246
+ self.slopes_l = torch.Tensor(self.get_slopes(self.n_heads)).to(device)*-1
247
+ self.slopes_r = torch.Tensor(self.get_slopes(self.n_heads)).to(device)*-1
248
+ elif self.struct_attn_type == "rpe_sbias":
249
+ self.slopes = torch.Tensor(self.get_slopes(self.n_heads)).to(device)*-1
250
+ self.struct_slopes = torch.Tensor(self.get_slopes(self.n_heads)).to(device)*-1
251
+ else:
252
+ self.slopes = torch.Tensor(self.get_slopes(self.n_heads)).to(device)*-1
253
+ elif self.pos_enc_type == "KerpleLog":
254
+ self.eps = 1e-2
255
+ self.bias_p = self.get_kerple_parameter(2, 'uniform',device)
256
+ self.bias_a = self.get_kerple_parameter(1, 'uniform',device)
257
+ elif self.pos_enc_type in ["NoPE", "LearnedAPE", "SinusoidalAPE","SinusoidalAPE2D", "RoPE"]:
258
+ #self.relative_attention_bias = None # No positional encoding bias
259
+ pass
260
+ else:
261
+ self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads)
262
+ # Add more types if necessary
263
+
264
+ # Allocate weights and initialize.
265
+ # The kernel has the form -p*log(1+a*|m-n|)
266
+ def get_kerple_parameter(self,scale, init_method, device):
267
+ if init_method == 'ones':
268
+ return Parameter(torch.ones(
269
+ self.n_heads,
270
+ device=device,
271
+ )[:,None,None]*scale )
272
+ elif init_method == 'uniform':
273
+ return Parameter(torch.rand(
274
+ self.n_heads,
275
+ device=device,
276
+ )[:,None,None]*scale )
277
+
278
+ # https://github.com/ofirpress/attention_with_linear_biases/issues/5
279
+ def get_slopes(self, n):
280
+ def get_slopes_power_of_2(n):
281
+ start = (2**(-2**-(math.log2(n)-3)))
282
+ ratio = start
283
+ return [start*ratio**i for i in range(n)]
284
+
285
+ if math.log2(n).is_integer():
286
+ return get_slopes_power_of_2(n) #In the paper, we only train models that have 2^a heads for some a. This function has
287
+ else: #some good properties that only occur when the input is a power of 2. To maintain that even
288
+ closest_power_of_2 = 2**math.floor(math.log2(n)) #when the number of heads is not a power of 2, we use this workaround.
289
+ return get_slopes_power_of_2(closest_power_of_2) + self.get_slopes(2*closest_power_of_2)[0::2][:n-closest_power_of_2]
290
+
291
+ def compute_struct_bias(self, query_length, key_length, device=None, relative_position=None):
292
+ """Compute binned relative position bias"""
293
+ if device is None:
294
+ device = self.relative_attention_bias.weight.device
295
+
296
+ #print("#### Compute bias")
297
+ if self.pos_enc_type in ["NoPE", "LearnedAPE", "SinusoidalAPE","SinusoidalAPE2D", "RoPE"]:
298
+ return torch.zeros((1, self.n_heads, query_length, key_length), device=device)
299
+ #elif self.pos_enc_type == "Alibi":
300
+ elif self.pos_enc_type in ["Alibi","APEAlibi"]:
301
+ if self.struct_attn_type == "duo":
302
+ if relative_position is None:
303
+ context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None]
304
+ memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :]
305
+ relative_position = memory_position - context_position # shape (query_length, key_length)
306
+
307
+ if self.rpe_type == "abs":
308
+ relative_position = torch.abs(relative_position).unsqueeze(0).expand(self.n_heads, -1,-1)
309
+ else:
310
+ relative_position = relative_position.unsqueeze(0).expand(self.n_heads, -1,-1)
311
+
312
+ self.slopes_l = self.slopes_l.to(device)
313
+ self.slopes_r = self.slopes_r.to(device)
314
+
315
+ alibi_left = self.slopes_l.unsqueeze(1).unsqueeze(1) * relative_position
316
+ alibi_right = self.slopes_r.unsqueeze(1).unsqueeze(1) * relative_position
317
+
318
+ values = torch.triu(alibi_right) + torch.tril(alibi_left)
319
+ values = values.view(1, self.n_heads, query_length, key_length) # shape (1, num_heads, query_length, key_length)
320
+ return values
321
+ else:
322
+ if relative_position is None:
323
+ context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None]
324
+ memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :]
325
+ relative_position = memory_position - context_position # shape (query_length, key_length)
326
+ #else:
327
+ #Simple case here, every tree has the same distance matrix
328
+ #relative_position = relative_position.repeat(1, self.n_heads, 1, 1)
329
+
330
+ if self.rpe_type == "abs":
331
+ relative_position = torch.abs(relative_position).unsqueeze(0).expand(self.n_heads, -1,-1)
332
+ else:
333
+ relative_position = relative_position.unsqueeze(0).expand(self.n_heads, -1,-1)
334
+
335
+ #print(f"relative_position.shape:{relative_position.shape}")
336
+ #print(f"relative_position:{relative_position}")
337
+ self.struct_slopes = self.struct_slopes.to(device)
338
+
339
+ values = self.struct_slopes.unsqueeze(1).unsqueeze(1) * relative_position
340
+ values = values.view(1, self.n_heads, query_length, key_length) # shape (1, num_heads, query_length, key_length)
341
+ return values
342
+ elif self.pos_enc_type == "KerpleLog":
343
+ if relative_position is None:
344
+ context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None]
345
+ memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :]
346
+ relative_position = memory_position - context_position # shape (query_length, key_length)
347
+ if self.rpe_type == "abs":
348
+ relative_position = torch.abs(relative_position).unsqueeze(0).expand(self.n_heads, -1,-1)
349
+ else:
350
+ relative_position = relative_position.unsqueeze(0).expand(self.n_heads, -1,-1)
351
+
352
+ self.bias_p.data = self.bias_p.data.clamp(min=self.eps)
353
+ self.bias_a.data = self.bias_a.data.clamp(min=self.eps)
354
+
355
+ self.bias_p = self.bias_p.to(device)
356
+ self.bias_a = self.bias_a.to(device)
357
+
358
+ values = -self.bias_p*torch.log(1+self.bias_a*relative_position) # log kernel # shape (num_heads, query_length, key_length)
359
+ values = values.unsqueeze(0) # shape (1, num_heads, query_length, key_length)
360
+ return values
361
+ else:
362
+ #context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None]
363
+ #memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :]
364
+ #relative_position = memory_position - context_position # shape (query_length, key_length)
365
+ if relative_position is None:
366
+ context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None]
367
+ memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :]
368
+ relative_position = memory_position - context_position # shape (query_length, key_length)
369
+ relative_position_bucket = self._relative_position_bucket(
370
+ relative_position, # shape (query_length, key_length)
371
+ bidirectional=(not self.is_decoder),
372
+ num_buckets=self.relative_attention_num_buckets,
373
+ max_distance=self.relative_attention_max_distance,
374
+ )
375
+ values = self.relative_attention_bias(relative_position_bucket) # shape (query_length, key_length, num_heads)
376
+ values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, query_length, key_length)
377
+ return values
378
+
379
+ def compute_bias(self, query_length, key_length, device=None, relative_position=None):
380
+ """Compute binned relative position bias"""
381
+ if device is None:
382
+ device = self.relative_attention_bias.weight.device
383
+
384
+ #print("query_length",query_length)
385
+ #print("key_length",key_length)
386
+
387
+ #print("#### Compute bias")
388
+ if self.pos_enc_type in ["NoPE", "LearnedAPE", "SinusoidalAPE","SinusoidalAPE2D", "RoPE"]:
389
+ return torch.zeros((1, self.n_heads, query_length, key_length), device=device)
390
+ #elif self.pos_enc_type == "Alibi":
391
+ elif self.pos_enc_type in ["Alibi","APEAlibi"]:
392
+ if self.struct_attn_type == "duo":
393
+ relative_position = relative_position.to(device)
394
+
395
+ if self.rpe_type == "abs":
396
+ relative_position = torch.abs(relative_position).unsqueeze(0).expand(self.n_heads, -1,-1)
397
+ else:
398
+ relative_position = relative_position.unsqueeze(0).expand(self.n_heads, -1,-1)
399
+
400
+ self.slopes_l = self.slopes_l.to(device)
401
+ self.slopes_r = self.slopes_r.to(device)
402
+
403
+ alibi_left = self.slopes_l.unsqueeze(1).unsqueeze(1) * relative_position
404
+ alibi_right = self.slopes_r.unsqueeze(1).unsqueeze(1) * relative_position
405
+
406
+ values = torch.triu(alibi_right) + torch.tril(alibi_left)
407
+ # Slice the relevant part of the bias before reshaping
408
+ values = values[:, :query_length, :key_length] # Slicing the tensor before reshaping
409
+
410
+ values = values.view(1, self.n_heads, query_length, key_length) # shape (1, num_heads, query_length, key_length)
411
+ #print(f"values.shape:{values.shape}")
412
+
413
+ return values
414
+ else:
415
+ if relative_position is None:
416
+ context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None]
417
+ memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :]
418
+ relative_position = memory_position - context_position # shape (query_length, key_length)
419
+ #else:
420
+ #Simple case here, every tree has the same distance matrix
421
+ #relative_position = relative_position.repeat(1, self.n_heads, 1, 1)
422
+
423
+ if self.rpe_type == "abs":
424
+ relative_position = torch.abs(relative_position).unsqueeze(0).expand(self.n_heads, -1,-1)
425
+ else:
426
+ relative_position = relative_position.unsqueeze(0).expand(self.n_heads, -1,-1)
427
+
428
+ #print(f"relative_position.shape:{relative_position.shape}")
429
+ #print(f"relative_position:{relative_position}")
430
+ self.slopes = self.slopes.to(device)
431
+
432
+ values = self.slopes.unsqueeze(1).unsqueeze(1) * relative_position
433
+ values = values.view(1, self.n_heads, query_length, key_length) # shape (1, num_heads, query_length, key_length)
434
+ return values
435
+ elif self.pos_enc_type == "KerpleLog":
436
+ if relative_position is None:
437
+ context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None]
438
+ memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :]
439
+ relative_position = memory_position - context_position # shape (query_length, key_length)
440
+ if self.rpe_type == "abs":
441
+ relative_position = torch.abs(relative_position).unsqueeze(0).expand(self.n_heads, -1,-1)
442
+ else:
443
+ relative_position = relative_position.unsqueeze(0).expand(self.n_heads, -1,-1)
444
+
445
+ self.bias_p.data = self.bias_p.data.clamp(min=self.eps)
446
+ self.bias_a.data = self.bias_a.data.clamp(min=self.eps)
447
+
448
+ self.bias_p = self.bias_p.to(device)
449
+ self.bias_a = self.bias_a.to(device)
450
+
451
+ values = -self.bias_p*torch.log(1+self.bias_a*relative_position) # log kernel # shape (num_heads, query_length, key_length)
452
+ values = values.unsqueeze(0) # shape (1, num_heads, query_length, key_length)
453
+ return values
454
+ else:
455
+ #context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None]
456
+ #memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :]
457
+ #relative_position = memory_position - context_position # shape (query_length, key_length)
458
+ if relative_position is None:
459
+ context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None]
460
+ memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :]
461
+ relative_position = memory_position - context_position # shape (query_length, key_length)
462
+ relative_position_bucket = self._relative_position_bucket(
463
+ relative_position, # shape (query_length, key_length)
464
+ bidirectional=(not self.is_decoder),
465
+ num_buckets=self.relative_attention_num_buckets,
466
+ max_distance=self.relative_attention_max_distance,
467
+ )
468
+ values = self.relative_attention_bias(relative_position_bucket) # shape (query_length, key_length, num_heads)
469
+ values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, query_length, key_length)
470
+ return values
471
+
472
+ def forward(
473
+ self,
474
+ hidden_states,
475
+ mask=None,
476
+ key_value_states=None,
477
+ position_bias=None,
478
+ past_key_value=None,
479
+ layer_head_mask=None,
480
+ query_length=None,
481
+ use_cache=False,
482
+ output_attentions=False,
483
+ relative_position=None,
484
+ struct_position_bias=None,
485
+ ):
486
+ """
487
+ Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states).
488
+ """
489
+ # Input is (batch_size, seq_length, dim)
490
+ # Mask is (batch_size, key_length) (non-causal) or (batch_size, key_length, key_length)
491
+ # past_key_value[0] is (batch_size, n_heads, q_len - 1, dim_per_head)
492
+ batch_size, seq_length = hidden_states.shape[:2]
493
+
494
+
495
+ real_seq_length = seq_length
496
+
497
+ if past_key_value is not None:
498
+ if len(past_key_value) != 2:
499
+ raise ValueError(
500
+ f"past_key_value should have 2 past states: keys and values. Got { len(past_key_value)} past states"
501
+ )
502
+ real_seq_length += past_key_value[0].shape[2] if query_length is None else query_length
503
+
504
+ key_length = real_seq_length if key_value_states is None else key_value_states.shape[1]
505
+
506
+
507
+ def shape(states):
508
+ """projection"""
509
+ return states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2)
510
+
511
+ def unshape(states):
512
+ """reshape"""
513
+ return states.transpose(1, 2).contiguous().view(batch_size, -1, self.inner_dim)
514
+
515
+ def project(hidden_states, proj_layer, key_value_states, past_key_value):
516
+ """projects hidden states correctly to key/query states"""
517
+ if key_value_states is None:
518
+ # self-attn
519
+ # (batch_size, n_heads, seq_length, dim_per_head)
520
+ hidden_states = shape(proj_layer(hidden_states))
521
+ elif past_key_value is None:
522
+ # cross-attn
523
+ # (batch_size, n_heads, seq_length, dim_per_head)
524
+ hidden_states = shape(proj_layer(key_value_states))
525
+
526
+ if past_key_value is not None:
527
+ if key_value_states is None:
528
+ # self-attn
529
+ # (batch_size, n_heads, key_length, dim_per_head)
530
+ hidden_states = torch.cat([past_key_value, hidden_states], dim=2)
531
+ elif past_key_value.shape[2] != key_value_states.shape[1]:
532
+ # checking that the `sequence_length` of the `past_key_value` is the same as
533
+ # the provided `key_value_states` to support prefix tuning
534
+ # cross-attn
535
+ # (batch_size, n_heads, seq_length, dim_per_head)
536
+ hidden_states = shape(proj_layer(key_value_states))
537
+ else:
538
+ # cross-attn
539
+ hidden_states = past_key_value
540
+ return hidden_states
541
+
542
+ #print(f"\nattn_type:{self.attn_type}")
543
+ #print(f"hidden_states.shape:{hidden_states.shape}")
544
+ #if key_value_states is not None:
545
+ # print(f"key_value_states.shape:{key_value_states.shape}")
546
+ #if past_key_value is not None:
547
+ # print(f"past_key_value[0].shape:{past_key_value[0].shape}")
548
+
549
+ # get query states
550
+ query_states = shape(self.q(hidden_states)) # (batch_size, n_heads, seq_length, dim_per_head)
551
+ #print(f"query_states.shape (before RoPE): {query_states.shape}") # Check shape before RoPE
552
+
553
+ # get key/value states
554
+ if self.pos_enc_type == "RoPE":
555
+ #key_states = shape(self.k(hidden_states))
556
+ #findme
557
+ key_states = project(
558
+ hidden_states, self.k, key_value_states, past_key_value[0] if past_key_value is not None else None
559
+ )
560
+
561
+ #print(f"key_states2.shape (before RoPE): {key_states2.shape}")
562
+ else:
563
+ key_states = project(
564
+ hidden_states, self.k, key_value_states, past_key_value[0] if past_key_value is not None else None
565
+ )
566
+
567
+ #print(f"key_states.shape (before RoPE): {key_states.shape}")
568
+
569
+ value_states = project(
570
+ hidden_states, self.v, key_value_states, past_key_value[1] if past_key_value is not None else None
571
+ )
572
+
573
+ attention_output_dict = {}
574
+
575
+ #print(f"orig, key_states.shape:{key_states.shape}")
576
+ #print(f"orig, query_states.shape:{query_states.shape}")
577
+
578
+ #print(f"has_relative_attention_bias:{self.has_relative_attention_bias}")
579
+ #print(f"attn_type:{self.attn_type}")
580
+ #print(f"pos_enc_type:{self.pos_enc_type}")
581
+ #print(f"rpe_type:{self.rpe_type}")
582
+
583
+ if self.pos_enc_type == "RoPE":
584
+ r_seq_len = hidden_states.shape[1]
585
+ r_offset = 0
586
+
587
+ if past_key_value is not None:
588
+ # This is considering seq2seq auto-regressive generation case, while the absolute position is offset by + input_len
589
+ # Can be turned off to test
590
+ #print(f"past_key_value[0].shape:{past_key_value[0].shape}")
591
+ r_offset = past_key_value[0].shape[2]
592
+ r_seq_len += r_offset
593
+
594
+ query_states = query_states.permute(0, 2, 1, 3)
595
+ key_states = key_states.permute(0, 2, 1, 3)
596
+
597
+ if self.rotary_dim is not None:
598
+
599
+ k_rot = key_states[:, :, :, : self.rotary_dim]
600
+ k_pass = key_states[:, :, :, self.rotary_dim :]
601
+
602
+ q_rot = query_states[:, :, :, : self.rotary_dim]
603
+ q_pass = query_states[:, :, :, self.rotary_dim :]
604
+
605
+ sincos = fixed_pos_embedding(k_rot, 1, seq_len=r_seq_len)
606
+ k_rot = apply_rotary_pos_emb(k_rot, sincos, offset=r_offset)
607
+ q_rot = apply_rotary_pos_emb(q_rot, sincos, offset=r_offset)
608
+
609
+ if output_attentions:
610
+ scores_pass = torch.matmul(
611
+ q_pass.permute(0, 2, 1, 3),
612
+ k_pass.permute(0, 2, 1, 3).transpose(3, 2),
613
+ )
614
+ attention_output_dict["scores_pass"] = scores_pass
615
+
616
+ scores_rot = torch.matmul(
617
+ q_rot.permute(0, 2, 1, 3),
618
+ k_rot.permute(0, 2, 1, 3).transpose(3, 2),
619
+ )
620
+ attention_output_dict["scores_rot"] = scores_rot
621
+
622
+ key_states = torch.cat([k_rot, k_pass], dim=-1)
623
+ query_states = torch.cat([q_rot, q_pass], dim=-1)
624
+ else:
625
+ sincos = fixed_pos_embedding(key_states, 1, seq_len=r_seq_len)
626
+ key_states = apply_rotary_pos_emb(key_states, sincos, offset=r_offset)
627
+ query_states = apply_rotary_pos_emb(
628
+ query_states, sincos, offset=r_offset
629
+ )
630
+
631
+ #print(f"inner,before_permute, key_states.shape:{key_states.shape}")
632
+ #print(f"inner,before_permute, query_states.shape:{query_states.shape}")
633
+ """
634
+ inner,before_permute, key_states.shape:torch.Size([1, 2, 8, 64])
635
+ inner,before_permute, query_states.shape:torch.Size([1, 1, 8, 64])
636
+ """
637
+
638
+ query_states = query_states.permute(0, 2, 1, 3)
639
+ key_states = key_states.permute(0, 2, 1, 3)
640
+
641
+ #Ignore this if it's already taken care of in project(hidden_states, proj_layer, key_value_states, past_key_value)
642
+ """
643
+ if past_key_value is not None:
644
+ print(f"past_key_value[0].shape before concat: {past_key_value[0].shape}")
645
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
646
+ """
647
+
648
+ #print(f"inner, key_states.shape:{key_states.shape}")
649
+ #print(f"inner, key_states.transpose(3, 2).shape:{key_states.transpose(3, 2).shape}")
650
+ #print(f"inner, query_states.shape:{query_states.shape}")
651
+ """
652
+ # At decoder for 3rd token self-attn
653
+ attn_type:self
654
+ hidden_states.shape:torch.Size([1, 1, 128])
655
+ query_states.shape (before RoPE): torch.Size([1, 8, 1, 64])
656
+ key_states.shape (before RoPE): torch.Size([1, 8, 2, 64])
657
+ orig, key_states.shape:torch.Size([1, 8, 2, 64])
658
+ orig, query_states.shape:torch.Size([1, 8, 1, 64])
659
+ inner, key_states.shape:torch.Size([1, 8, 3, 64]) <- this should be [1, 8, 2, 64]
660
+ inner, query_states.shape:torch.Size([1, 8, 1, 64])
661
+ scores.shape:torch.Size([1, 8, 1, 3])
662
+ mask.shape:torch.Size([1, 1, 1, 2])
663
+ """
664
+
665
+
666
+ scores = torch.matmul(
667
+ query_states, key_states.transpose(3, 2)
668
+ ) # equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9
669
+
670
+ #print(f"scores.shape:{scores.shape}")
671
+ #scores.shape:torch.Size([480, 8, 64, 64])
672
+ #mask.shape:torch.Size([480, 1, 1, 64])
673
+
674
+ # At 1st layer cross attn
675
+ # scores.shape:torch.Size([1, 8, 1, 1])!!! for the first token it could be key_length=1 but why seq_length = 1 ??
676
+ if mask is not None:
677
+ #print(f"mask.shape:{mask.shape}")
678
+ #scores += mask # (batch_size, n_heads, seq_length, key_length)
679
+ #scores = scores+mask # (batch_size, n_heads, seq_length, key_length)
680
+ expanded_mask = mask.expand_as(scores) # expand mask tensor to all heads
681
+ #print(f"expanded_mask.shape:{expanded_mask.shape}")
682
+ #print("mask",mask)
683
+ #print("expanded_mask",expanded_mask)
684
+ scores += expanded_mask
685
+ #print("scores",scores)
686
+ #print(f"scores.shape:{scores.shape}")
687
+ #RuntimeError: output with shape [512, 8, 1, 1] doesn't match the broadcast shape [512, 8, 1, 64]
688
+
689
+ else:
690
+ # compute scores
691
+ scores = torch.matmul(
692
+ query_states, key_states.transpose(3, 2)
693
+ ) # equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9
694
+
695
+ #print(f"scores.shape:{scores.shape}")
696
+ #scores.shape:torch.Size([480, 8, 64, 64])
697
+ #print(f"self.attn_type",self.attn_type)
698
+
699
+ if self.struct_attn_type == "rpe_sbias":
700
+ if struct_position_bias is None:
701
+ if not self.has_relative_attention_bias:
702
+ #print("not has_relative_attention_bias")
703
+ struct_position_bias = torch.zeros(
704
+ (1, self.n_heads, real_seq_length, key_length), device=scores.device, dtype=scores.dtype
705
+ )
706
+ if self.gradient_checkpointing and self.training:
707
+ struct_position_bias.requires_grad = True
708
+ else:
709
+ struct_position_bias = self.compute_struct_bias(real_seq_length, key_length, device=scores.device, relative_position=relative_position)
710
+
711
+ # if key and values are already calculated
712
+ # we want only the last query position bias
713
+ if past_key_value is not None:
714
+ struct_position_bias = struct_position_bias[:, :, -hidden_states.size(1) :, :]
715
+
716
+ #print("struct_position_bias.shape:", position_bias.shape)
717
+ #struct_position_bias.shape: torch.Size([1, 8, 64, 64])
718
+ if mask is not None:
719
+ #print(f"mask.shape:{mask.shape}")
720
+ #mask.shape:torch.Size([480, 1, 1, 64])
721
+ struct_position_bias = struct_position_bias + mask # (batch_size, n_heads, seq_length, key_length)
722
+ #print(f"position_bias.shape:{position_bias.shape}")
723
+ # torch.Size([480, 8, 64, 64])
724
+
725
+ if self.pruned_heads:
726
+ mask = torch.ones(struct_position_bias.shape[1])
727
+ mask[list(self.pruned_heads)] = 0
728
+ struct_position_bias_masked = struct_position_bias[:, mask.bool()]
729
+ else:
730
+ struct_position_bias_masked = struct_position_bias
731
+
732
+ #print(f"struct_position_bias.shape:{struct_position_bias.shape}")
733
+ #print(f"struct_position_bias_masked.shape:{struct_position_bias_masked.shape}")
734
+
735
+ if position_bias is None:
736
+ if not self.has_relative_attention_bias:
737
+ #print("not has_relative_attention_bias")
738
+ position_bias = torch.zeros(
739
+ (1, self.n_heads, real_seq_length, key_length), device=scores.device, dtype=scores.dtype
740
+ )
741
+ if self.gradient_checkpointing and self.training:
742
+ position_bias.requires_grad = True
743
+ else:
744
+ if self.pos_enc_type in ["Alibi","APEAlibi"]:
745
+ position_bias = self.compute_bias(real_seq_length, key_length, device=scores.device, relative_position=relative_position)
746
+ else:
747
+ if self.struct_attn_type == "rpe_sbias":
748
+ position_bias = self.compute_bias(real_seq_length, key_length, device=scores.device, relative_position=None)
749
+ else:
750
+ position_bias = self.compute_bias(real_seq_length, key_length, device=scores.device, relative_position=None)
751
+ #print(f"position_bias1.shape:{position_bias.shape}")
752
+
753
+ # if key and values are already calculated
754
+ # we want only the last query position bias
755
+ if past_key_value is not None:
756
+ position_bias = position_bias[:, :, -hidden_states.size(1) :, :]
757
+
758
+ #print(f"position_bias2.shape:{position_bias.shape}")
759
+
760
+ #print("position_bias.shape:", position_bias.shape)
761
+ #position_bias.shape: torch.Size([1, 8, 64, 64])
762
+ if mask is not None:
763
+ #print(f"mask.shape:{mask.shape}")
764
+ #mask.shape:torch.Size([480, 1, 1, 64])
765
+ position_bias = position_bias + mask # (batch_size, n_heads, seq_length, key_length)
766
+ #print(f"masked position_bias.shape:{position_bias.shape}")
767
+ # torch.Size([480, 8, 64, 64])
768
+
769
+ #print(f"position_bias3.shape:{position_bias.shape}")
770
+
771
+ if self.pruned_heads:
772
+ mask = torch.ones(position_bias.shape[1])
773
+ mask[list(self.pruned_heads)] = 0
774
+ position_bias_masked = position_bias[:, mask.bool()]
775
+ else:
776
+ position_bias_masked = position_bias
777
+
778
+ #print(f"position_bias.shape:{position_bias.shape}")
779
+ #print(f"position_bias_masked.shape:{position_bias_masked.shape}")
780
+ #print(f"scores.shape:{scores.shape}")
781
+
782
+ if self.struct_attn_type == "rpe_sbias" and self.attn_type == "self":
783
+ scores += position_bias_masked + struct_position_bias_masked
784
+ else:
785
+ scores += position_bias_masked
786
+
787
+ attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as(
788
+ scores
789
+ ) # (batch_size, n_heads, seq_length, key_length)
790
+ attn_weights = nn.functional.dropout(
791
+ attn_weights, p=self.dropout, training=self.training
792
+ ) # (batch_size, n_heads, seq_length, key_length)
793
+
794
+ # Mask heads if we want to
795
+ if layer_head_mask is not None:
796
+ attn_weights = attn_weights * layer_head_mask
797
+
798
+ attn_output = unshape(torch.matmul(attn_weights, value_states)) # (batch_size, seq_length, dim)
799
+ attn_output = self.o(attn_output)
800
+
801
+ present_key_value_state = (key_states, value_states) if (self.is_decoder and use_cache) else None
802
+ """
803
+ if self.struct_attn_type == "rpe_sbias":
804
+ outputs = (attn_output,) + (present_key_value_state,) + (position_bias,) + (struct_position_bias,)
805
+ else:
806
+ outputs = (attn_output,) + (present_key_value_state,) + (position_bias,)
807
+ """
808
+
809
+ outputs = (attn_output,) + (present_key_value_state,) + (position_bias,) + (struct_position_bias,)
810
+
811
+ if output_attentions:
812
+ outputs = outputs + (attn_weights,)
813
+ return outputs
814
+
815
+
816
+ from transformers.models.t5.modeling_t5 import T5LayerSelfAttention, T5LayerCrossAttention
817
+ import copy
818
+
819
+ class CustomT5LayerSelfAttention(T5LayerSelfAttention):
820
+ def __init__(self, config, has_relative_attention_bias=False, pos_enc_type="RPE", rpe_type="abs"):
821
+ super().__init__(config, has_relative_attention_bias)
822
+ self.pos_enc_type=pos_enc_type
823
+ self.rpe_type=rpe_type
824
+ self.SelfAttention = CustomT5Attention(config, has_relative_attention_bias=has_relative_attention_bias, pos_enc_type=pos_enc_type, attn_type="self", rpe_type=rpe_type)
825
+ self.is_decoder = config.is_decoder
826
+
827
+ def forward(
828
+ self,
829
+ hidden_states,
830
+ attention_mask=None,
831
+ position_bias=None,
832
+ layer_head_mask=None,
833
+ past_key_value=None,
834
+ use_cache=False,
835
+ output_attentions=False,
836
+ relative_position=None,
837
+ struct_position_bias=None,
838
+ ):
839
+ normed_hidden_states = self.layer_norm(hidden_states)
840
+ attention_output = self.SelfAttention(
841
+ normed_hidden_states,
842
+ mask=attention_mask,
843
+ position_bias=position_bias,
844
+ struct_position_bias=struct_position_bias,
845
+ layer_head_mask=layer_head_mask,
846
+ past_key_value=past_key_value,
847
+ use_cache=use_cache,
848
+ output_attentions=output_attentions,
849
+ relative_position=relative_position,
850
+ )
851
+ hidden_states = hidden_states + self.dropout(attention_output[0])
852
+ outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them
853
+ return outputs
854
+
855
+ class CustomT5LayerCrossAttention(T5LayerCrossAttention):
856
+ def __init__(self, config, pos_enc_type="RPE", rpe_type="abs"):
857
+ super().__init__(config)
858
+ self.pos_enc_type=pos_enc_type
859
+ self.rpe_type=rpe_type
860
+ self.EncDecAttention = CustomT5Attention(config, has_relative_attention_bias=False, pos_enc_type=pos_enc_type, attn_type="cross", rpe_type=rpe_type)
861
+ self.is_decoder = config.is_decoder
862
+
863
+ def forward(
864
+ self,
865
+ hidden_states,
866
+ key_value_states,
867
+ attention_mask=None,
868
+ position_bias=None,
869
+ layer_head_mask=None,
870
+ past_key_value=None,
871
+ use_cache=False,
872
+ query_length=None,
873
+ output_attentions=False,
874
+ relative_position=None,
875
+ struct_position_bias=None,
876
+ ):
877
+ normed_hidden_states = self.layer_norm(hidden_states)
878
+ attention_output = self.EncDecAttention(
879
+ normed_hidden_states,
880
+ mask=attention_mask,
881
+ key_value_states=key_value_states,
882
+ position_bias=position_bias,
883
+ layer_head_mask=layer_head_mask,
884
+ past_key_value=past_key_value,
885
+ use_cache=use_cache,
886
+ query_length=query_length,
887
+ output_attentions=output_attentions,
888
+ relative_position=relative_position,
889
+ struct_position_bias=struct_position_bias,
890
+ )
891
+ layer_output = hidden_states + self.dropout(attention_output[0])
892
+ outputs = (layer_output,) + attention_output[1:] # add attentions if we output them
893
+ return outputs
894
+
895
+ from transformers.models.t5.modeling_t5 import T5Block, T5LayerFF
896
+
897
+ class CustomT5Block(T5Block):
898
+ def __init__(self, config, has_relative_attention_bias=False, pos_enc_type="RPE", rpe_type="abs"):
899
+ super().__init__(config, has_relative_attention_bias)
900
+ self.pos_enc_type=pos_enc_type
901
+ self.rpe_type=rpe_type
902
+ self.layer = nn.ModuleList()
903
+ self.layer.append(CustomT5LayerSelfAttention(config, has_relative_attention_bias=has_relative_attention_bias, pos_enc_type=pos_enc_type, rpe_type=rpe_type))
904
+ if self.is_decoder:
905
+ self.layer.append(CustomT5LayerCrossAttention(config, pos_enc_type=pos_enc_type, rpe_type=rpe_type))
906
+ self.layer.append(T5LayerFF(config))
907
+
908
+ def forward(
909
+ self,
910
+ hidden_states,
911
+ attention_mask=None,
912
+ position_bias=None,
913
+ encoder_hidden_states=None,
914
+ encoder_attention_mask=None,
915
+ encoder_decoder_position_bias=None,
916
+ encoder_decoder_struct_position_bias=None,
917
+ layer_head_mask=None,
918
+ cross_attn_layer_head_mask=None,
919
+ past_key_value=None,
920
+ use_cache=False,
921
+ output_attentions=False,
922
+ return_dict=True,
923
+ relative_position=None,
924
+ struct_position_bias=None,
925
+ ):
926
+ if past_key_value is not None:
927
+ if not self.is_decoder:
928
+ logger.warning("`past_key_values` is passed to the encoder. Please make sure this is intended.")
929
+ expected_num_past_key_values = 2 if encoder_hidden_states is None else 4
930
+
931
+ if len(past_key_value) != expected_num_past_key_values:
932
+ raise ValueError(
933
+ f"There should be {expected_num_past_key_values} past states. "
934
+ f"{'2 (key / value) for cross attention. ' if expected_num_past_key_values == 4 else ''}"
935
+ f"Got {len(past_key_value)} past key / value states"
936
+ )
937
+
938
+ self_attn_past_key_value = past_key_value[:2]
939
+ cross_attn_past_key_value = past_key_value[2:]
940
+ else:
941
+ self_attn_past_key_value, cross_attn_past_key_value = None, None
942
+
943
+ self_attention_outputs = self.layer[0](
944
+ hidden_states,
945
+ attention_mask=attention_mask,
946
+ position_bias=position_bias,
947
+ layer_head_mask=layer_head_mask,
948
+ past_key_value=self_attn_past_key_value,
949
+ use_cache=use_cache,
950
+ output_attentions=output_attentions,
951
+ relative_position=relative_position,
952
+ struct_position_bias=struct_position_bias,
953
+ )
954
+ hidden_states, present_key_value_state = self_attention_outputs[:2]
955
+ attention_outputs = self_attention_outputs[2:] # Keep self-attention outputs and relative position weights
956
+
957
+ # clamp inf values to enable fp16 training
958
+ if hidden_states.dtype == torch.float16:
959
+ clamp_value = torch.where(
960
+ torch.isinf(hidden_states).any(),
961
+ torch.finfo(hidden_states.dtype).max - 1000,
962
+ torch.finfo(hidden_states.dtype).max,
963
+ )
964
+ hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
965
+
966
+ do_cross_attention = self.is_decoder and encoder_hidden_states is not None
967
+ if do_cross_attention:
968
+ # the actual query length is unknown for cross attention
969
+ # if using past key value states. Need to inject it here
970
+ if present_key_value_state is not None:
971
+ query_length = present_key_value_state[0].shape[2]
972
+ else:
973
+ query_length = None
974
+
975
+ cross_attention_outputs = self.layer[1](
976
+ hidden_states,
977
+ key_value_states=encoder_hidden_states,
978
+ attention_mask=encoder_attention_mask,
979
+ position_bias=encoder_decoder_position_bias,
980
+ layer_head_mask=cross_attn_layer_head_mask,
981
+ past_key_value=cross_attn_past_key_value,
982
+ query_length=query_length,
983
+ use_cache=use_cache,
984
+ output_attentions=output_attentions,
985
+ struct_position_bias=encoder_decoder_struct_position_bias,
986
+ relative_position=relative_position,
987
+ )
988
+ hidden_states = cross_attention_outputs[0]
989
+
990
+ # clamp inf values to enable fp16 training
991
+ if hidden_states.dtype == torch.float16:
992
+ clamp_value = torch.where(
993
+ torch.isinf(hidden_states).any(),
994
+ torch.finfo(hidden_states.dtype).max - 1000,
995
+ torch.finfo(hidden_states.dtype).max,
996
+ )
997
+ hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
998
+
999
+ # Combine self attn and cross attn key value states
1000
+ if present_key_value_state is not None:
1001
+ present_key_value_state = present_key_value_state + cross_attention_outputs[1]
1002
+
1003
+ # Keep cross-attention outputs and relative position weights
1004
+ attention_outputs = attention_outputs + cross_attention_outputs[2:]
1005
+
1006
+ # Apply Feed Forward layer
1007
+ hidden_states = self.layer[-1](hidden_states)
1008
+
1009
+ # clamp inf values to enable fp16 training
1010
+ if hidden_states.dtype == torch.float16:
1011
+ clamp_value = torch.where(
1012
+ torch.isinf(hidden_states).any(),
1013
+ torch.finfo(hidden_states.dtype).max - 1000,
1014
+ torch.finfo(hidden_states.dtype).max,
1015
+ )
1016
+ hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
1017
+
1018
+ outputs = (hidden_states,)
1019
+
1020
+ if use_cache:
1021
+ outputs = outputs + (present_key_value_state,) + attention_outputs
1022
+ else:
1023
+ outputs = outputs + attention_outputs
1024
+
1025
+ return outputs # hidden-states, present_key_value_states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights)
1026
+
1027
+
1028
+ from transformers.models.t5.modeling_t5 import T5Stack
1029
+ import numpy as np
1030
+ from pathlib import Path
1031
+ import logging
1032
+ import os
1033
+ logger = logging.getLogger("debug")
1034
+
1035
+ class CustomT5Stack(T5Stack):
1036
+ def __init__(self, config, embed_tokens=None, pos_enc_type="RPE", rpe_type="abs"):
1037
+ super().__init__(config, embed_tokens)
1038
+ #self.pos_enc_type=pos_enc_type
1039
+
1040
+ # Alibi-rpe_sbias
1041
+ if "-" in pos_enc_type:
1042
+ pos_enc_split = pos_enc_type.split("-")
1043
+ self.pos_enc_type = pos_enc_split[0]
1044
+ self.struct_attn_type = pos_enc_split[1]
1045
+ else:
1046
+ self.pos_enc_type = pos_enc_type
1047
+ self.struct_attn_type = ""
1048
+
1049
+ self.rpe_type=rpe_type
1050
+ self.block = nn.ModuleList(
1051
+ [CustomT5Block(config, has_relative_attention_bias=bool(i == 0), pos_enc_type=pos_enc_type, rpe_type=rpe_type) for i in range(config.num_layers)]
1052
+ )
1053
+
1054
+ self.PE_mixer = VisionTransformerEmbedding(config.d_model, config)
1055
+ self.config = config
1056
+
1057
+ if self.pos_enc_type == "LearnedAPE":
1058
+ self.wpe = nn.Embedding(2048, config.d_model)
1059
+ self.wpe.weight.data.normal_(
1060
+ mean=0.0, std=config.initializer_factor * 1.0
1061
+ )
1062
+
1063
+ """
1064
+ parent_dir = Path(os.path.dirname(os.path.abspath(__file__)))
1065
+ learned_embed_file = parent_dir / "gpt_neo_125m_pos_embed.npy"
1066
+ if learned_embed_file.exists():
1067
+ logger.info(
1068
+ "Loading position embedding from {}".format(learned_embed_file)
1069
+ )
1070
+
1071
+ weight = np.load(str(learned_embed_file))
1072
+ self.wpe.weight.data.copy_(torch.from_numpy(weight))
1073
+ self.wpe.weight.requires_grad = False
1074
+ else:
1075
+ self.wpe.weight.data.normal_(
1076
+ mean=0.0, std=config.initializer_factor * 1.0
1077
+ )
1078
+ """
1079
+
1080
+ if self.pos_enc_type == "SinusoidalAPE":
1081
+ self.wpe = FixedAbsolutePositionalEmbedding(config.d_model)
1082
+
1083
+ if self.pos_enc_type in ["SinusoidalAPE2D","APEAlibi-duo","APEAlibi"]:
1084
+ # 2D APE for encoder and cross attn
1085
+ # A norminate obj_id just to test
1086
+ if config.use_objidx=="yes":
1087
+ self.wpe_obj_enc = FixedAbsolutePositionalEmbedding(config.d_model/2) # 128/2 -> 64
1088
+ self.wpe_x_enc = FixedAbsolutePositionalEmbedding(config.d_model/4) # 128/4 -> 32
1089
+ self.wpe_y_enc = FixedAbsolutePositionalEmbedding(config.d_model/4) # 128/4 -> 32
1090
+
1091
+ # Decoder is the same old 2D
1092
+ self.wpe_x = FixedAbsolutePositionalEmbedding(config.d_model/2) # 128/2 -> 64
1093
+ self.wpe_y = FixedAbsolutePositionalEmbedding(config.d_model/2) # 128/2 -> 64
1094
+
1095
+ # 1D APE for decoder/ non-2d positions
1096
+ self.wpe = FixedAbsolutePositionalEmbedding(config.d_model)
1097
+
1098
+ if self.pos_enc_type in ["Alibi-duo", "Alibi", "APEAlibi-duo", "APEAlibi"]:
1099
+ # Calculate relative positions for the 2D grid
1100
+ grid_height = self.config.grid_max_height
1101
+ grid_width = self.config.grid_max_width
1102
+ large_dist = max(grid_height,grid_width)+2
1103
+ relative_position_2d = self.calculate_2d_relative_positions(grid_height, grid_width)
1104
+
1105
+ # Create a relative position matrix for the full sequence including <s> and </s>
1106
+ total_length = grid_height * grid_width + 2 # +2 for <s> and </s>
1107
+ distance_matrix = torch.full((total_length, total_length), fill_value=large_dist) # 100 as a large distance
1108
+
1109
+ # Assign the 2D relative positions to the correct part of the matrix
1110
+ distance_matrix[1:1 + grid_height * grid_width, 1:1 + grid_height * grid_width] = relative_position_2d
1111
+
1112
+ # Optionally handle <s> and </s> relative positions
1113
+ distance_matrix[0, :] = large_dist # <s> is far from everything
1114
+ distance_matrix[:, 0] = large_dist
1115
+ distance_matrix[-1, :] = large_dist+1 # </s> is far from everything
1116
+ distance_matrix[:, -1] = large_dist+1
1117
+
1118
+ self.distance_matrix_2D = distance_matrix
1119
+ #self.register_buffer("distance_matrix", self.distance_matrix)
1120
+
1121
+ def calculate_2d_relative_positions(self, grid_height, grid_width):
1122
+ # Create grid coordinates
1123
+ x_coords, y_coords = torch.meshgrid(
1124
+ torch.arange(grid_height, dtype=torch.long),
1125
+ torch.arange(grid_width, dtype=torch.long),
1126
+ indexing='ij'
1127
+ )
1128
+
1129
+ # Flatten the 2D grid coordinates
1130
+ x_flat = x_coords.flatten()
1131
+ y_flat = y_coords.flatten()
1132
+
1133
+ # Initialize the relative position matrix
1134
+ num_positions = grid_height * grid_width
1135
+ relative_position = torch.zeros((num_positions, num_positions), dtype=torch.long)
1136
+
1137
+ # Calculate Manhattan distance between each pair of points
1138
+ for i in range(num_positions):
1139
+ for j in range(num_positions):
1140
+ relative_position[i, j] = abs(x_flat[i] - x_flat[j]) + abs(y_flat[i] - y_flat[j])
1141
+
1142
+ return relative_position
1143
+
1144
+
1145
+ def forward(
1146
+ self,
1147
+ input_ids=None,
1148
+ attention_mask=None,
1149
+ encoder_hidden_states=None,
1150
+ encoder_attention_mask=None,
1151
+ inputs_embeds=None,
1152
+ head_mask=None,
1153
+ cross_attn_head_mask=None,
1154
+ past_key_values=None,
1155
+ use_cache=None,
1156
+ output_attentions=None,
1157
+ output_hidden_states=None,
1158
+ position_ids=None,
1159
+ return_dict=None,
1160
+ relative_position=None,
1161
+ object_idx=None,
1162
+ ):
1163
+ # Model parallel
1164
+ if self.model_parallel:
1165
+ torch.cuda.set_device(self.first_device)
1166
+ self.embed_tokens = self.embed_tokens.to(self.first_device)
1167
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1168
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1169
+ output_hidden_states = (
1170
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1171
+ )
1172
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1173
+
1174
+ if input_ids is not None and inputs_embeds is not None:
1175
+ err_msg_prefix = "decoder_" if self.is_decoder else ""
1176
+ raise ValueError(
1177
+ f"You cannot specify both {err_msg_prefix}input_ids and {err_msg_prefix}inputs_embeds at the same time"
1178
+ )
1179
+ elif input_ids is not None:
1180
+ input_shape = input_ids.size()
1181
+ input_ids = input_ids.view(-1, input_shape[-1])
1182
+ elif inputs_embeds is not None:
1183
+ input_shape = inputs_embeds.size()[:-1]
1184
+ else:
1185
+ err_msg_prefix = "decoder_" if self.is_decoder else ""
1186
+ raise ValueError(f"You have to specify either {err_msg_prefix}input_ids or {err_msg_prefix}inputs_embeds")
1187
+
1188
+ if self.pos_enc_type in ["Alibi-duo", "Alibi", "APEAlibi-duo", "APEAlibi"]:
1189
+ relative_position = self.distance_matrix_2D
1190
+
1191
+ #print(f"input_ids.shape:{input_ids.shape}")
1192
+ # Print the shape of the embedding matrix
1193
+ #print(f"Embedding matrix shape: {self.embed_tokens.weight.shape}")
1194
+ # Print unique values in input_ids
1195
+ #unique_input_ids = torch.unique(input_ids)
1196
+ #print(f"Unique input IDs: {unique_input_ids}")
1197
+ #print(f"Max input ID: {torch.max(unique_input_ids)}")
1198
+ #print(f"Min input ID: {torch.min(unique_input_ids)}")
1199
+
1200
+ if inputs_embeds is None:
1201
+ if self.embed_tokens is None:
1202
+ raise ValueError("You have to initialize the model with valid token embeddings")
1203
+ inputs_embeds = self.embed_tokens(input_ids)
1204
+
1205
+ #print(f"inputs_embeds.shape:{inputs_embeds.shape}")
1206
+
1207
+ batch_size, seq_length = input_shape
1208
+
1209
+ # required mask seq length can be calculated via length of past
1210
+ mask_seq_length = past_key_values[0][0].shape[2] + seq_length if past_key_values is not None else seq_length
1211
+ #print(f"mask_seq_length:{mask_seq_length}")
1212
+
1213
+
1214
+ # Add 2D position embeddings, but only on input seq
1215
+ if self.pos_enc_type in [
1216
+ "SinusoidalAPE2D","APEAlibi-duo","APEAlibi"
1217
+ ]:
1218
+ if self.is_decoder or self.config.use_objidx!="yes":
1219
+ if position_ids is not None:
1220
+ position_ids = position_ids.view(-1, input_shape[-1])
1221
+
1222
+ if past_key_values is None:
1223
+ past_length = 0
1224
+ else:
1225
+ past_length = past_key_values[0][0].size(-2)
1226
+
1227
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1228
+ if position_ids is None:
1229
+ position_ids = torch.arange(
1230
+ past_length,
1231
+ input_shape[-1] + past_length,
1232
+ dtype=torch.long,
1233
+ device=device,
1234
+ )
1235
+ position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
1236
+
1237
+ #print(f"position_ids.shape:{position_ids.shape}")
1238
+ #print(f"position_ids:{position_ids}")
1239
+
1240
+ if position_ids.shape[-1] == 1024 or position_ids.shape[-1] == 1025 or True:
1241
+ #if position_ids.shape[-1] == 1024 or position_ids.shape[-1] == 1025:
1242
+ # Desired dimensions for ARC IO, individually
1243
+ # For decoder because we have <pad> as first token
1244
+ rows = self.config.grid_max_height
1245
+ cols = self.config.grid_max_width
1246
+
1247
+ # Flatten the position_ids tensor to remove batch dimension
1248
+ flat_position_ids = position_ids.view(-1)
1249
+ #print(f"flat_position_ids.shape:{flat_position_ids.shape}")
1250
+ #print(f"flat_position_ids:{flat_position_ids}")
1251
+
1252
+ # Generate position_ids_x
1253
+ position_ids_x = torch.arange(cols, device=device).repeat(rows)
1254
+
1255
+ # Generate position_ids_y
1256
+ position_ids_y = torch.arange(rows, device=device).repeat_interleave(cols)
1257
+
1258
+ # Handling batch size, repeat for each batch
1259
+ batch_size = position_ids.shape[0]
1260
+ position_ids_x = position_ids_x.repeat(batch_size, 1)
1261
+ position_ids_y = position_ids_y.repeat(batch_size, 1)
1262
+
1263
+ #position_embeds = self.wpe(position_ids)
1264
+ position_embeds_x = self.wpe_x(position_ids_x)
1265
+ position_embeds_y = self.wpe_y(position_ids_y)
1266
+ #print(f"position_embeds_x.shape:{position_embeds_x.shape}")
1267
+
1268
+ #position_embeds
1269
+ position_embeds_2d = torch.cat((position_embeds_x, position_embeds_y), dim=-1)
1270
+ # Apply 1D sinAPE for the <pad> token and tokens beyond 2+1024
1271
+ position_embeds_1d = self.wpe(position_ids)
1272
+ if self.is_decoder:
1273
+ # Combine embeddings
1274
+ position_embeds = position_embeds_1d.clone()
1275
+ #print(f"position_embeds=position_embeds_1d.clone().shape:{position_embeds.shape}")
1276
+
1277
+ p_seq_len = position_ids.shape[-1]
1278
+ #print(f"p_seq_len:{p_seq_len}")
1279
+ if p_seq_len >= 1123:
1280
+ position_embeds[:, 1:1123] = position_embeds_2d[:, :1122]
1281
+ elif p_seq_len == 1:
1282
+ pos_index = flat_position_ids[0]
1283
+ if pos_index == 0:
1284
+ # <pad> for 1d APE
1285
+ pass
1286
+ elif pos_index>1 and pos_index<=1122:
1287
+ # For model.generate() this will always be 1, but position_ids=(bs, pos_index)
1288
+ position_embeds[:, 0] = position_embeds_2d[:, pos_index-1]
1289
+ else:
1290
+ # > 1025
1291
+ pass
1292
+ else:
1293
+ #print(f"position_embeds.shape:{position_embeds.shape}")
1294
+ #print(f"position_embeds_2d.shape:{position_embeds_2d.shape}")
1295
+ #print(f"position_embeds[:, 1:p_seq_len].shape:{position_embeds[:, 1:p_seq_len].shape}")
1296
+ #print(f"position_embeds_2d[:, :p_seq_len-1].shape:{position_embeds_2d[:, :p_seq_len-1].shape}")
1297
+ position_embeds[:, 1:p_seq_len] = position_embeds_2d[:, :p_seq_len-1]
1298
+ else:
1299
+ position_embeds = position_embeds_1d.clone()
1300
+ position_embeds[:, 1:1123] = position_embeds_2d[:, :1122]
1301
+ else:
1302
+ # 1D sinAPE
1303
+ position_embeds = self.wpe(position_ids)
1304
+ else:
1305
+ # if NOT self.is_decoder:
1306
+ if position_ids is not None:
1307
+ position_ids = position_ids.view(-1, input_shape[-1])
1308
+
1309
+ if past_key_values is None:
1310
+ past_length = 0
1311
+ else:
1312
+ past_length = past_key_values[0][0].size(-2)
1313
+
1314
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1315
+ if position_ids is None:
1316
+ position_ids = torch.arange(
1317
+ past_length,
1318
+ input_shape[-1] + past_length,
1319
+ dtype=torch.long,
1320
+ device=device,
1321
+ )
1322
+ position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
1323
+
1324
+ #print(f"position_ids.shape:{position_ids.shape}")
1325
+ #print(f"position_ids:{position_ids}")
1326
+
1327
+ if position_ids.shape[-1] == 1024 or position_ids.shape[-1] == 1025 or True:
1328
+ #if position_ids.shape[-1] == 1024 or position_ids.shape[-1] == 1025:
1329
+ # Desired dimensions for ARC IO, individually
1330
+ # For decoder because we have <pad> as first token
1331
+ rows = self.config.grid_max_height
1332
+ cols = self.config.grid_max_width
1333
+
1334
+ # Flatten the position_ids tensor to remove batch dimension
1335
+ flat_position_ids = position_ids.view(-1)
1336
+ #print(f"flat_position_ids.shape:{flat_position_ids.shape}")
1337
+ #print(f"flat_position_ids:{flat_position_ids}")
1338
+
1339
+ # Generate position_ids_x
1340
+ position_ids_x = torch.arange(cols, device=device).repeat(rows)
1341
+
1342
+ # Generate position_ids_y
1343
+ position_ids_y = torch.arange(rows, device=device).repeat_interleave(cols)
1344
+
1345
+ # Handling batch size, repeat for each batch
1346
+ batch_size = position_ids.shape[0]
1347
+ position_ids_x = position_ids_x.repeat(batch_size, 1)
1348
+ position_ids_y = position_ids_y.repeat(batch_size, 1)
1349
+
1350
+ # Get the object embeddings
1351
+ object_embeds = self.wpe_obj_enc(object_idx[:, 1:-1]) # Assuming `object_idx` is passed in
1352
+ #print(f"object_idx.shape:{object_idx.shape}")
1353
+ #print(f"object_embeds.shape:{object_embeds.shape}")
1354
+
1355
+ #position_embeds = self.wpe(position_ids)
1356
+ position_embeds_x = self.wpe_x_enc(position_ids_x)
1357
+ #print(f"position_ids_x.shape:{position_ids_x.shape}")
1358
+ #print(f"position_embeds_x.shape:{position_embeds_x.shape}")
1359
+ position_embeds_y = self.wpe_y_enc(position_ids_y)
1360
+
1361
+ # Expand position_embeds_x and position_embeds_y to match the batch size
1362
+ position_embeds_x = position_embeds_x.expand(object_embeds.size(0), -1, -1) # Expand along the batch size
1363
+ position_embeds_y = position_embeds_y.expand(object_embeds.size(0), -1, -1) # Expand along the batch size
1364
+
1365
+ #position_embeds
1366
+ #position_embeds_2d = torch.cat((position_embeds_x, position_embeds_y), dim=-1)
1367
+ position_embeds_2d = torch.cat((object_embeds, position_embeds_x, position_embeds_y), dim=-1)
1368
+
1369
+ # Apply 1D sinAPE for the <pad> token and tokens beyond 2+1024
1370
+ position_embeds_1d = self.wpe(position_ids)
1371
+ position_embeds_1d = position_embeds_1d.expand(object_embeds.size(0), -1, -1) # Expand along the batch size
1372
+
1373
+ position_embeds = position_embeds_1d.clone()
1374
+ position_embeds[:, 1:1123] = position_embeds_2d[:, :1122]
1375
+ else:
1376
+ # 1D sinAPE
1377
+ position_embeds = self.wpe(position_ids)
1378
+
1379
+ #print(f"position_embeds.shape:{position_embeds.shape}")
1380
+ #print(f"position_embeds:{position_embeds}")
1381
+ #inputs_embeds += position_embeds
1382
+ inputs_embeds = self.PE_mixer(inputs_embeds, position_embeds)
1383
+
1384
+ if self.pos_enc_type in [
1385
+ "SinusoidalAPE",
1386
+ "LearnedAPE",
1387
+ ]:
1388
+ if position_ids is not None:
1389
+ position_ids = position_ids.view(-1, input_shape[-1])
1390
+
1391
+ if past_key_values is None:
1392
+ past_length = 0
1393
+ else:
1394
+ past_length = past_key_values[0][0].size(-2)
1395
+
1396
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1397
+ if position_ids is None:
1398
+ position_ids = torch.arange(
1399
+ past_length,
1400
+ input_shape[-1] + past_length,
1401
+ dtype=torch.long,
1402
+ device=device,
1403
+ )
1404
+ position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
1405
+
1406
+ #print(f"position_ids.shape:{position_ids.shape}")
1407
+ position_embeds = self.wpe(position_ids)
1408
+ #print(f"position_embeds.shape:{position_embeds.shape}")
1409
+ inputs_embeds += position_embeds
1410
+
1411
+ if self.struct_attn_type == "ape_sbias":
1412
+ # Extra APE, naive trial
1413
+ if relative_position is not None:
1414
+ struct_position_ids = relative_position.view(-1, input_shape[-1])
1415
+ #print(relative_position)
1416
+ #print(f"struct_position_ids.shape:{struct_position_ids.shape}")
1417
+ #print(struct_position_ids)
1418
+ struct_position_embeds = self.wpe(struct_position_ids)
1419
+ #print(f"struct_position_embeds.shape:{struct_position_embeds.shape}")
1420
+ inputs_embeds += struct_position_embeds
1421
+
1422
+ if use_cache is True:
1423
+ if not self.is_decoder:
1424
+ raise ValueError(f"`use_cache` can only be set to `True` if {self} is used as a decoder")
1425
+
1426
+ # initialize past_key_values with `None` if past does not exist
1427
+ if past_key_values is None:
1428
+ past_key_values = [None] * len(self.block)
1429
+
1430
+ if attention_mask is None:
1431
+ attention_mask = torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device)
1432
+
1433
+ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
1434
+ # ourselves in which case we just need to make it broadcastable to all heads.
1435
+ extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape)
1436
+
1437
+ # If a 2D or 3D attention mask is provided for the cross-attention
1438
+ # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
1439
+ if self.is_decoder and encoder_hidden_states is not None:
1440
+ encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
1441
+ encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
1442
+ if encoder_attention_mask is None:
1443
+ encoder_attention_mask = torch.ones(
1444
+ encoder_hidden_shape, device=inputs_embeds.device, dtype=torch.long
1445
+ )
1446
+ encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
1447
+ else:
1448
+ encoder_extended_attention_mask = None
1449
+
1450
+ if self.gradient_checkpointing and self.training:
1451
+ if use_cache:
1452
+ logger.warning_once(
1453
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
1454
+ )
1455
+ use_cache = False
1456
+
1457
+ # Prepare head mask if needed
1458
+ head_mask = self.get_head_mask(head_mask, self.config.num_layers)
1459
+ cross_attn_head_mask = self.get_head_mask(cross_attn_head_mask, self.config.num_layers)
1460
+ present_key_value_states = () if use_cache else None
1461
+ all_hidden_states = () if output_hidden_states else None
1462
+ all_attentions = () if output_attentions else None
1463
+ all_cross_attentions = () if (output_attentions and self.is_decoder) else None
1464
+ position_bias = None
1465
+ struct_position_bias = None
1466
+ encoder_decoder_position_bias = None
1467
+ encoder_decoder_struct_position_bias = None
1468
+
1469
+ hidden_states = self.dropout(inputs_embeds)
1470
+
1471
+ for i, (layer_module, past_key_value) in enumerate(zip(self.block, past_key_values)):
1472
+ layer_head_mask = head_mask[i]
1473
+ cross_attn_layer_head_mask = cross_attn_head_mask[i]
1474
+ # Model parallel
1475
+ if self.model_parallel:
1476
+ torch.cuda.set_device(hidden_states.device)
1477
+ # Ensure that attention_mask is always on the same device as hidden_states
1478
+ if attention_mask is not None:
1479
+ attention_mask = attention_mask.to(hidden_states.device)
1480
+ if position_bias is not None:
1481
+ position_bias = position_bias.to(hidden_states.device)
1482
+ if struct_position_bias is not None:
1483
+ struct_position_bias = struct_position_bias.to(hidden_states.device)
1484
+ if encoder_hidden_states is not None:
1485
+ encoder_hidden_states = encoder_hidden_states.to(hidden_states.device)
1486
+ if encoder_extended_attention_mask is not None:
1487
+ encoder_extended_attention_mask = encoder_extended_attention_mask.to(hidden_states.device)
1488
+ if encoder_decoder_position_bias is not None:
1489
+ encoder_decoder_position_bias = encoder_decoder_position_bias.to(hidden_states.device)
1490
+ if encoder_decoder_struct_position_bias is not None:
1491
+ encoder_decoder_struct_position_bias = encoder_decoder_struct_position_bias.to(hidden_states.device)
1492
+ if layer_head_mask is not None:
1493
+ layer_head_mask = layer_head_mask.to(hidden_states.device)
1494
+ if cross_attn_layer_head_mask is not None:
1495
+ cross_attn_layer_head_mask = cross_attn_layer_head_mask.to(hidden_states.device)
1496
+ if output_hidden_states:
1497
+ all_hidden_states = all_hidden_states + (hidden_states,)
1498
+
1499
+ if self.gradient_checkpointing and self.training:
1500
+ layer_outputs = self._gradient_checkpointing_func(
1501
+ layer_module.forward,
1502
+ hidden_states,
1503
+ extended_attention_mask,
1504
+ position_bias,
1505
+ encoder_hidden_states,
1506
+ encoder_extended_attention_mask,
1507
+ encoder_decoder_position_bias,
1508
+ layer_head_mask,
1509
+ cross_attn_layer_head_mask,
1510
+ None, # past_key_value is always None with gradient checkpointing
1511
+ use_cache,
1512
+ output_attentions,
1513
+ )
1514
+ else:
1515
+ layer_outputs = layer_module(
1516
+ hidden_states,
1517
+ attention_mask=extended_attention_mask,
1518
+ position_bias=position_bias,
1519
+ struct_position_bias=struct_position_bias, # Pass the struct_position_bias to the layer
1520
+ encoder_hidden_states=encoder_hidden_states,
1521
+ encoder_attention_mask=encoder_extended_attention_mask,
1522
+ encoder_decoder_position_bias=encoder_decoder_position_bias,
1523
+ encoder_decoder_struct_position_bias=encoder_decoder_struct_position_bias,
1524
+ layer_head_mask=layer_head_mask,
1525
+ cross_attn_layer_head_mask=cross_attn_layer_head_mask,
1526
+ past_key_value=past_key_value,
1527
+ use_cache=use_cache,
1528
+ output_attentions=output_attentions,
1529
+ relative_position=relative_position, # Pass the relative_position to the layer
1530
+ )
1531
+
1532
+ # layer_outputs is a tuple with:
1533
+ # hidden-states, key-value-states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights)
1534
+ # hidden-states, key-value-states, (self-attention position bias), (self-attention struct position bias), (self-attention weights),
1535
+ # (cross-attention position bias), (cross-attention struct position bias), (cross-attention weights)
1536
+ if use_cache is False:
1537
+ layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:]
1538
+
1539
+ hidden_states, present_key_value_state = layer_outputs[:2]
1540
+
1541
+ # We share the position biases between the layers - the first layer store them
1542
+ # layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights),
1543
+ # (cross-attention position bias), (cross-attention weights)
1544
+ position_bias = layer_outputs[2]
1545
+ struct_position_bias = layer_outputs[3]
1546
+ if self.is_decoder and encoder_hidden_states is not None:
1547
+ encoder_decoder_position_bias = layer_outputs[5 if output_attentions else 4]
1548
+ encoder_decoder_struct_position_bias = layer_outputs[7 if output_attentions else 5]
1549
+
1550
+ # append next layer key value states
1551
+ if use_cache:
1552
+ present_key_value_states = present_key_value_states + (present_key_value_state,)
1553
+
1554
+ """
1555
+ if output_attentions:
1556
+ all_attentions = all_attentions + (layer_outputs[3],)
1557
+ if self.is_decoder:
1558
+ all_cross_attentions = all_cross_attentions + (layer_outputs[5],)
1559
+ """
1560
+
1561
+ if output_attentions:
1562
+ all_attentions = all_attentions + (layer_outputs[4],)
1563
+ if self.is_decoder:
1564
+ all_cross_attentions = all_cross_attentions + (layer_outputs[6],)
1565
+
1566
+ # Model Parallel: If it's the last layer for that device, put things on the next device
1567
+ if self.model_parallel:
1568
+ for k, v in self.device_map.items():
1569
+ if i == v[-1] and "cuda:" + str(k) != self.last_device:
1570
+ hidden_states = hidden_states.to("cuda:" + str(k + 1))
1571
+
1572
+ hidden_states = self.final_layer_norm(hidden_states)
1573
+ hidden_states = self.dropout(hidden_states)
1574
+
1575
+ # Add last layer
1576
+ if output_hidden_states:
1577
+ all_hidden_states = all_hidden_states + (hidden_states,)
1578
+
1579
+ if not return_dict:
1580
+ return tuple(
1581
+ v
1582
+ for v in [
1583
+ hidden_states,
1584
+ present_key_value_states,
1585
+ all_hidden_states,
1586
+ all_attentions,
1587
+ all_cross_attentions,
1588
+ ]
1589
+ if v is not None
1590
+ )
1591
+ return BaseModelOutputWithPastAndCrossAttentions(
1592
+ last_hidden_state=hidden_states,
1593
+ past_key_values=present_key_value_states,
1594
+ hidden_states=all_hidden_states,
1595
+ attentions=all_attentions,
1596
+ cross_attentions=all_cross_attentions,
1597
+ )
1598
+
1599
+
1600
+ from transformers.models.t5.modeling_t5 import T5ForConditionalGeneration, T5Config
1601
+
1602
+ import copy
1603
+ import math
1604
+ import os
1605
+ import warnings
1606
+ from typing import List, Optional, Tuple, Union
1607
+
1608
+ import torch
1609
+ from torch import nn
1610
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
1611
+
1612
+ from transformers.activations import ACT2FN
1613
+ from transformers.modeling_outputs import (
1614
+ BaseModelOutput,
1615
+ BaseModelOutputWithPastAndCrossAttentions,
1616
+ Seq2SeqLMOutput,
1617
+ Seq2SeqModelOutput,
1618
+ Seq2SeqQuestionAnsweringModelOutput,
1619
+ Seq2SeqSequenceClassifierOutput,
1620
+ TokenClassifierOutput,
1621
+ )
1622
+ from transformers.modeling_utils import PreTrainedModel
1623
+ from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS, find_pruneable_heads_and_indices, prune_linear_layer
1624
+ from transformers.utils import (
1625
+ DUMMY_INPUTS,
1626
+ DUMMY_MASK,
1627
+ add_start_docstrings,
1628
+ add_start_docstrings_to_model_forward,
1629
+ is_torch_fx_proxy,
1630
+ logging,
1631
+ replace_return_docstrings,
1632
+ )
1633
+ from transformers.utils.model_parallel_utils import assert_device_map, get_device_map
1634
+ from transformers.models.t5.configuration_t5 import T5Config
1635
+
1636
+ # Warning message for FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
1637
+ __HEAD_MASK_WARNING_MSG = """
1638
+ The input argument `head_mask` was split into two arguments `head_mask` and `decoder_head_mask`. Currently,
1639
+ `decoder_head_mask` is set to copy `head_mask`, but this feature is deprecated and will be removed in future versions.
1640
+ If you do not want to use any `decoder_head_mask` now, please set `decoder_head_mask = torch.ones(num_layers,
1641
+ num_heads)`.
1642
+ """
1643
+
1644
+ class CustomT5ForConditionalGeneration(T5ForConditionalGeneration):
1645
+ def __init__(self, config: T5Config, pos_enc_type="RPE", rpe_type="abs"):
1646
+ super().__init__(config)
1647
+ self.model_dim = config.d_model
1648
+ self.pos_enc_type=pos_enc_type
1649
+ self.rpe_type=rpe_type
1650
+
1651
+ self.shared = nn.Embedding(config.vocab_size, config.d_model)
1652
+
1653
+ encoder_config = copy.deepcopy(config)
1654
+ encoder_config.is_decoder = False
1655
+ encoder_config.use_cache = False
1656
+ encoder_config.is_encoder_decoder = False
1657
+ self.encoder = CustomT5Stack(encoder_config, self.shared, pos_enc_type=pos_enc_type, rpe_type=rpe_type)
1658
+
1659
+ decoder_config = copy.deepcopy(config)
1660
+ decoder_config.is_decoder = True
1661
+ decoder_config.is_encoder_decoder = False
1662
+ decoder_config.num_layers = config.num_decoder_layers
1663
+ self.decoder = CustomT5Stack(decoder_config, self.shared, pos_enc_type=pos_enc_type, rpe_type=rpe_type)
1664
+
1665
+ self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)
1666
+
1667
+ # Initialize weights and apply final processing
1668
+ self.post_init()
1669
+
1670
+ # Model parallel
1671
+ self.model_parallel = False
1672
+ self.device_map = None
1673
+
1674
+ def forward(
1675
+ self,
1676
+ input_ids: Optional[torch.LongTensor] = None,
1677
+ attention_mask: Optional[torch.FloatTensor] = None,
1678
+ decoder_input_ids: Optional[torch.LongTensor] = None,
1679
+ decoder_attention_mask: Optional[torch.BoolTensor] = None,
1680
+ head_mask: Optional[torch.FloatTensor] = None,
1681
+ decoder_head_mask: Optional[torch.FloatTensor] = None,
1682
+ cross_attn_head_mask: Optional[torch.Tensor] = None,
1683
+ encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None,
1684
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
1685
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1686
+ decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
1687
+ labels: Optional[torch.LongTensor] = None,
1688
+ use_cache: Optional[bool] = None,
1689
+ output_attentions: Optional[bool] = None,
1690
+ output_hidden_states: Optional[bool] = None,
1691
+ return_dict: Optional[bool] = None,
1692
+ # customized distance_matrix w.r.t to encoder self-attention
1693
+ distance_matrix: Optional[torch.FloatTensor] = None,
1694
+ object_idx: Optional[torch.FloatTensor] = None,
1695
+ # unlike nlp [0,..n] natural sequence, customized struct_position_indexs
1696
+ # For now, just re-use distance_matrix if APE-sbias
1697
+ #struct_position_indexs: Optional[torch.FloatTensor] = None,
1698
+ ) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
1699
+ r"""
1700
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1701
+ Labels for computing the sequence classification/regression loss. Indices should be in `[-100, 0, ...,
1702
+ config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for
1703
+ labels in `[0, ..., config.vocab_size]`
1704
+
1705
+ Returns:
1706
+
1707
+ Examples:
1708
+
1709
+ ```python
1710
+ >>> from transformers import AutoTokenizer, T5ForConditionalGeneration
1711
+
1712
+ >>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-small")
1713
+ >>> model = T5ForConditionalGeneration.from_pretrained("google-t5/t5-small")
1714
+
1715
+ >>> # training
1716
+ >>> input_ids = tokenizer("The <extra_id_0> walks in <extra_id_1> park", return_tensors="pt").input_ids
1717
+ >>> labels = tokenizer("<extra_id_0> cute dog <extra_id_1> the <extra_id_2>", return_tensors="pt").input_ids
1718
+ >>> outputs = model(input_ids=input_ids, labels=labels)
1719
+ >>> loss = outputs.loss
1720
+ >>> logits = outputs.logits
1721
+
1722
+ >>> # inference
1723
+ >>> input_ids = tokenizer(
1724
+ ... "summarize: studies have shown that owning a dog is good for you", return_tensors="pt"
1725
+ ... ).input_ids # Batch size 1
1726
+ >>> outputs = model.generate(input_ids)
1727
+ >>> print(tokenizer.decode(outputs[0], skip_special_tokens=True))
1728
+ >>> # studies have shown that owning a dog is good for you.
1729
+ ```"""
1730
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1731
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1732
+
1733
+ # FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
1734
+ if head_mask is not None and decoder_head_mask is None:
1735
+ if self.config.num_layers == self.config.num_decoder_layers:
1736
+ warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning)
1737
+ decoder_head_mask = head_mask
1738
+
1739
+ # Encode if needed (training, first prediction pass)
1740
+ if encoder_outputs is None:
1741
+ # Convert encoder inputs in embeddings if needed
1742
+ encoder_outputs = self.encoder(
1743
+ input_ids=input_ids,
1744
+ attention_mask=attention_mask,
1745
+ inputs_embeds=inputs_embeds,
1746
+ head_mask=head_mask,
1747
+ output_attentions=output_attentions,
1748
+ output_hidden_states=output_hidden_states,
1749
+ return_dict=return_dict,
1750
+ relative_position=distance_matrix, # Pass the distance_matrix here
1751
+ object_idx=object_idx,
1752
+ )
1753
+ elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
1754
+ encoder_outputs = BaseModelOutput(
1755
+ last_hidden_state=encoder_outputs[0],
1756
+ hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
1757
+ attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
1758
+ )
1759
+
1760
+ hidden_states = encoder_outputs[0]
1761
+
1762
+ if self.model_parallel:
1763
+ torch.cuda.set_device(self.decoder.first_device)
1764
+
1765
+ if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None:
1766
+ # get decoder inputs from shifting lm labels to the right
1767
+ decoder_input_ids = self._shift_right(labels)
1768
+
1769
+ # Set device for model parallelism
1770
+ if self.model_parallel:
1771
+ torch.cuda.set_device(self.decoder.first_device)
1772
+ hidden_states = hidden_states.to(self.decoder.first_device)
1773
+ if decoder_input_ids is not None:
1774
+ decoder_input_ids = decoder_input_ids.to(self.decoder.first_device)
1775
+ if attention_mask is not None:
1776
+ attention_mask = attention_mask.to(self.decoder.first_device)
1777
+ if decoder_attention_mask is not None:
1778
+ decoder_attention_mask = decoder_attention_mask.to(self.decoder.first_device)
1779
+
1780
+ # Decode
1781
+ decoder_outputs = self.decoder(
1782
+ input_ids=decoder_input_ids,
1783
+ attention_mask=decoder_attention_mask,
1784
+ inputs_embeds=decoder_inputs_embeds,
1785
+ past_key_values=past_key_values,
1786
+ encoder_hidden_states=hidden_states,
1787
+ encoder_attention_mask=attention_mask,
1788
+ head_mask=decoder_head_mask,
1789
+ cross_attn_head_mask=cross_attn_head_mask,
1790
+ use_cache=use_cache,
1791
+ output_attentions=output_attentions,
1792
+ output_hidden_states=output_hidden_states,
1793
+ return_dict=return_dict,
1794
+ )
1795
+
1796
+ sequence_output = decoder_outputs[0]
1797
+
1798
+ # Set device for model parallelism
1799
+ if self.model_parallel:
1800
+ torch.cuda.set_device(self.encoder.first_device)
1801
+ self.lm_head = self.lm_head.to(self.encoder.first_device)
1802
+ sequence_output = sequence_output.to(self.lm_head.weight.device)
1803
+
1804
+ if self.config.tie_word_embeddings:
1805
+ # Rescale output before projecting on vocab
1806
+ # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586
1807
+ sequence_output = sequence_output * (self.model_dim**-0.5)
1808
+
1809
+ lm_logits = self.lm_head(sequence_output)
1810
+
1811
+ loss = None
1812
+ if labels is not None:
1813
+ loss_fct = CrossEntropyLoss(ignore_index=-100)
1814
+ # move labels to correct device to enable PP
1815
+ labels = labels.to(lm_logits.device)
1816
+ loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1))
1817
+ # TODO(thom): Add z_loss https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L666
1818
+
1819
+ if not return_dict:
1820
+ output = (lm_logits,) + decoder_outputs[1:] + encoder_outputs
1821
+ return ((loss,) + output) if loss is not None else output
1822
+
1823
+ return Seq2SeqLMOutput(
1824
+ loss=loss,
1825
+ logits=lm_logits,
1826
+ past_key_values=decoder_outputs.past_key_values,
1827
+ decoder_hidden_states=decoder_outputs.hidden_states,
1828
+ decoder_attentions=decoder_outputs.attentions,
1829
+ cross_attentions=decoder_outputs.cross_attentions,
1830
+ encoder_last_hidden_state=encoder_outputs.last_hidden_state,
1831
+ encoder_hidden_states=encoder_outputs.hidden_states,
1832
+ encoder_attentions=encoder_outputs.attentions,
1833
+ )
concept--main/dsl.py ADDED
@@ -0,0 +1,542 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from collections import deque, Counter
3
+
4
+ # --- Grid Transformation Functions ---
5
+ def remove_vertical_lines(ctx):
6
+ rows, cols = len(ctx.grid), len(ctx.grid[0])
7
+
8
+ for obj in ctx.objects:
9
+ columns = {}
10
+ for r, c in obj[2]:
11
+ if c not in columns:
12
+ columns[c] = []
13
+ columns[c].append(r)
14
+
15
+ for c, rows_in_col in columns.items():
16
+ if len(rows_in_col) > 1:
17
+ unique_vals = {ctx.grid[r][c] for r in rows_in_col}
18
+ if len(unique_vals) == 1:
19
+ for r in rows_in_col:
20
+ ctx.grid[r][c] = 0
21
+ return ctx.grid
22
+ def fill_object_interior(ctx):
23
+ """
24
+ Fills the interior of each object in the GPContext grid.
25
+ Assumes ctx.objects has been extracted already.
26
+ """
27
+ rows, cols = len(ctx.grid), len(ctx.grid[0])
28
+
29
+ for obj in ctx.objects:
30
+ min_r = min(r for r, c in obj)
31
+ max_r = max(r for r, c in obj)
32
+ min_c = min(c for r, c in obj)
33
+ max_c = max(c for r, c in obj)
34
+
35
+ obj_color = ctx.grid[min_r][min_c]
36
+ fill_color = (obj_color + 1) % 9 or 1 # consistent color, avoid zero
37
+
38
+ for r in range(min_r, max_r + 1):
39
+ for c in range(min_c, max_c + 1):
40
+ if (r, c) not in obj and ctx.grid[r][c] == 0:
41
+ ctx.grid[r][c] = fill_color
42
+
43
+ return ctx.grid
44
+
45
+ def move_right_most_object(ctx):
46
+ if not ctx.objects:
47
+ return ctx.grid
48
+
49
+ # Get rightmost object: object with largest column index
50
+ rightmost_object = max(ctx.objects, key=lambda obj: max(y for x, y in obj[2]))
51
+ _, value, block = rightmost_object
52
+
53
+ for x, y in block:
54
+ ctx.grid[x][y] = 0
55
+
56
+ shift = 0
57
+ cols = len(ctx.grid[0])
58
+ while True:
59
+ can_move = True
60
+ for x, y in block:
61
+ new_y = y + shift + 1
62
+ if new_y >= cols or ctx.grid[x][new_y] != 0:
63
+ can_move = False
64
+ break
65
+ if not can_move:
66
+ break
67
+ shift += 1
68
+
69
+ for x, y in block:
70
+ ctx.grid[x][y + shift] = value
71
+
72
+ return ctx.grid
73
+ def move_left_most_object(ctx):
74
+ if not ctx.objects:
75
+ return ctx.grid
76
+
77
+ # Get leftmost object: object with smallest column index
78
+ leftmost_object = min(ctx.objects, key=lambda obj: min(y for x, y in obj[2]))
79
+ _, value, block = leftmost_object
80
+
81
+ for x, y in block:
82
+ ctx.grid[x][y] = 0
83
+
84
+ shift = 0
85
+ while True:
86
+ can_move = True
87
+ for x, y in block:
88
+ new_y = y - (shift + 1)
89
+ if new_y < 0 or ctx.grid[x][new_y] != 0:
90
+ can_move = False
91
+ break
92
+ if not can_move:
93
+ break
94
+ shift += 1
95
+
96
+ for x, y in block:
97
+ ctx.grid[x][y - shift] = value
98
+
99
+ return ctx.grid
100
+
101
+ def move_bottom_most_object(ctx):
102
+ if not ctx.objects:
103
+ return ctx.grid
104
+
105
+ # Get bottommost object (last one in the list after sorting by top_row)
106
+ bottom_object = ctx.objects[-1]
107
+ _, value, block = bottom_object
108
+
109
+ # Remove it from the grid
110
+ for x, y in block:
111
+ ctx.grid[x][y] = 0
112
+
113
+ # Compute shift (same as top, move down)
114
+ shift = 0
115
+ rows = len(ctx.grid)
116
+ while True:
117
+ can_move = True
118
+ for x, y in block:
119
+ new_x = x + shift + 1
120
+ if new_x >= rows or ctx.grid[new_x][y] != 0:
121
+ can_move = False
122
+ break
123
+ if not can_move:
124
+ break
125
+ shift += 1
126
+
127
+ # Place object
128
+ for x, y in block:
129
+ ctx.grid[x + shift][y] = value
130
+
131
+ return ctx.grid
132
+ def detect_objects(grid):
133
+ """
134
+ Detects objects in an ARC grid.
135
+ Objects are contiguous regions of the same color (4-connected).
136
+ Returns a list of objects, where each object is a set of (row, col) coordinates.
137
+ """
138
+ rows, cols = len(grid), len(grid[0])
139
+ visited = set()
140
+ objects = []
141
+
142
+ def bfs(start_r, start_c, color):
143
+ """ Perform BFS to find all connected pixels of the same color """
144
+ queue = deque([(start_r, start_c)])
145
+ obj_pixels = set()
146
+
147
+ while queue:
148
+ r, c = queue.popleft()
149
+ if (r, c) in visited:
150
+ continue
151
+
152
+ visited.add((r, c))
153
+ obj_pixels.add((r, c))
154
+
155
+ # Check 4-connected neighbors (up, down, left, right)
156
+ for dr, dc in [(-1, 0), (1, 0), (0, -1), (0, 1)]:
157
+ nr, nc = r + dr, c + dc
158
+ if 0 <= nr < rows and 0 <= nc < cols and (nr, nc) not in visited:
159
+ if grid[nr][nc] == color:
160
+ queue.append((nr, nc))
161
+
162
+ return obj_pixels
163
+
164
+ # Iterate over the grid to find objects
165
+ for r in range(rows):
166
+ for c in range(cols):
167
+ if (r, c) not in visited and grid[r][c] != 0: # Ignore background (0)
168
+ obj = bfs(r, c, grid[r][c])
169
+ objects.append(obj)
170
+
171
+ return objects
172
+ def highlight_detected_objects(grid):
173
+ objects = detect_objects(grid)
174
+ new_grid = [row[:] for row in grid]
175
+ for idx, obj in enumerate(objects, start=1):
176
+ for r, c in obj:
177
+ new_grid[r][c] = (idx % 9) or 1
178
+ return new_grid
179
+
180
+ def fill_object_interior(grid):
181
+ """ Modifies the grid by filling the interiors of detected objects with a different color."""
182
+ objects = detect_objects(grid)
183
+ rows, cols = len(grid), len(grid[0])
184
+ new_grid = [row[:] for row in grid] # Create a copy of the grid
185
+
186
+ for obj in objects:
187
+ min_r = min(r for r, c in obj)
188
+ max_r = max(r for r, c in obj)
189
+ min_c = min(c for r, c in obj)
190
+ max_c = max(c for r, c in obj)
191
+
192
+ # Find a new fill color (incrementing the current color modulo 9 for variation)
193
+ obj_color = grid[min_r][min_c]
194
+ fill_color = (obj_color + 1) % 9 if obj_color + 1 != 0 else 1
195
+
196
+ # Identify and fill the interior pixels of the object
197
+ for r in range(min_r, max_r + 1):
198
+ for c in range(min_c, max_c + 1):
199
+ if (r, c) not in obj and grid[r][c] == 0: # Empty space inside the object
200
+ new_grid[r][c] = fill_color
201
+
202
+ return new_grid
203
+ def diamirror(input_grid):
204
+ return np.transpose(input_grid)
205
+
206
+
207
+ import numpy as np
208
+
209
+ def get_object_bounds(grid):
210
+ grid = np.array(grid)
211
+ top, bottom = None, None
212
+ for i in range(grid.shape[0]):
213
+ if np.any(grid[i] != 0):
214
+ if top is None:
215
+ top = i
216
+ bottom = i
217
+ return top, bottom
218
+ def reverse_object_top_bottom(grid):
219
+ grid = np.array(grid)
220
+ top, bottom = get_object_bounds(grid)
221
+ if top is None or bottom is None:
222
+ return grid
223
+ grid_copy = np.copy(grid)
224
+ grid_copy[top:bottom+1] = np.flipud(grid[top:bottom+1])
225
+ return grid_copy
226
+
227
+ def hmirror(input_grid: np.ndarray) -> np.ndarray:
228
+ return np.fliplr(input_grid)
229
+
230
+ def vmirrors(input_grid: np.ndarray) -> np.ndarray:
231
+ return np.flipud(input_grid)
232
+
233
+ def flip_horizontal(input_grid: np.ndarray) -> np.ndarray:
234
+ return np.fliplr(input_grid)
235
+
236
+ def flip_vertical(input_grid: np.ndarray) -> np.ndarray:
237
+ return np.flipud(input_grid)
238
+
239
+ def rotate_90(input_grid: np.ndarray) -> np.ndarray:
240
+ return np.rot90(input_grid, k=-1)
241
+
242
+ def rotate_180(input_grid: np.ndarray) -> np.ndarray:
243
+ return np.rot90(input_grid, k=2)
244
+
245
+ def rotate_270(input_grid: np.ndarray) -> np.ndarray:
246
+ return np.rot90(input_grid, k=1)
247
+
248
+ def identity(input_grid: np.ndarray) -> np.ndarray:
249
+ return input_grid
250
+ def find_center_pixel(grid):
251
+ """Finds the center pixel of the input grid and returns it as a 1x1 output grid."""
252
+ center_index = len(grid[0]) // 2 # Get the middle index
253
+ return [[grid[0][center_index]]] # Return as a 1x1 grid with the center pixel
254
+
255
+ # --- Object Detection and Manipulation ---
256
+ def detect_objects(grid):
257
+ """Detects objects in the grid and returns a list of bounding boxes and pixel coordinates."""
258
+ height, width = len(grid), len(grid[0])
259
+ visited = set()
260
+ objects = []
261
+
262
+ def bfs(r, c, color):
263
+ """Finds all pixels belonging to an object using BFS."""
264
+ queue = [(r, c)]
265
+ pixels = [] # Use a list instead of a set
266
+ min_r, max_r, min_c, max_c = r, r, c, c
267
+
268
+ while queue:
269
+ x, y = queue.pop(0)
270
+ if (x, y) in visited:
271
+ continue
272
+ visited.add((x, y))
273
+ pixels.append((x, y)) # Append to list
274
+ min_r, max_r = min(min_r, x), max(max_r, x)
275
+ min_c, max_c = min(min_c, y), max(max_c, y)
276
+
277
+ for dx, dy in [(-1, 0), (1, 0), (0, -1), (0, 1)]: # Only vertical & horizontal connections
278
+ nx, ny = x + dx, y + dy
279
+ if (0 <= nx < height and 0 <= ny < width and (nx, ny) not in visited and grid[nx][ny] == color):
280
+ queue.append((nx, ny))
281
+
282
+ return (min_r, max_r, min_c, max_c, color, pixels) # Return tuple, pixels as a list
283
+
284
+ for r in range(height):
285
+ for c in range(width):
286
+ if grid[r][c] != 0 and (r, c) not in visited:
287
+ visited.add((r, c))
288
+ objects.append(bfs(r, c, grid[r][c])) # Append tuple to list
289
+
290
+ return objects # Ensure `objects` is a list, not a set
291
+
292
+ def extract_bottom_object(grid):
293
+ """Extracts the bottom-most object from the grid, crops it, and returns it as a new grid."""
294
+ objects = detect_objects(grid)
295
+ if not objects:
296
+ return grid
297
+
298
+ bottom_object = max(objects, key=lambda obj: obj[1]) # obj[1] is max_r
299
+ min_r, max_r, min_c, max_c, obj_color, pixels = bottom_object
300
+ cropped_height = max_r - min_r + 1
301
+ cropped_width = max_c - min_c + 1
302
+ cropped_grid = np.zeros((cropped_height, cropped_width), dtype=int)
303
+
304
+ for r, c in pixels:
305
+ cropped_grid[r - min_r, c - min_c] = obj_color
306
+
307
+ return cropped_grid.tolist()
308
+
309
+ def keep_bottom_object(grid):
310
+ """Keeps only the bottom-most object and removes all others."""
311
+ height, width = len(grid), len(grid[0])
312
+ objects = detect_objects(grid)
313
+ output_grid = np.zeros((height, width), dtype=int)
314
+
315
+ if not objects:
316
+ return output_grid.tolist()
317
+
318
+ bottom_object = max(objects, key=lambda obj: obj[1]) # obj[1] is max_r
319
+
320
+ for r, c in bottom_object[5]: # obj[5] contains pixels
321
+ output_grid[r][c] = bottom_object[4] # obj[4] is color
322
+
323
+ return output_grid.tolist()
324
+
325
+ def recolor_to_bottom_object(grid):
326
+ """Recolors all objects to match the color of the bottom-most object."""
327
+ height, width = len(grid), len(grid[0])
328
+ objects = detect_objects(grid)
329
+ output_grid = np.array(grid)
330
+
331
+ if not objects:
332
+ return output_grid.tolist()
333
+
334
+ bottom_object = max(objects, key=lambda obj: obj[1]) # obj[1] is max_r
335
+ bottom_color = bottom_object[4] # obj[4] is color
336
+
337
+ for min_r, max_r, min_c, max_c, obj_color, pixels in objects:
338
+ for r, c in pixels:
339
+ output_grid[r][c] = bottom_color # Change to bottom-most object's color
340
+
341
+ return output_grid.tolist()
342
+
343
+ def remove_top_bottom_objects(grid):
344
+ """Removes objects that touch either the top or bottom of the grid."""
345
+ height, width = len(grid), len(grid[0])
346
+ objects = detect_objects(grid)
347
+ output_grid = np.zeros((height, width), dtype=int)
348
+
349
+ if not objects:
350
+ return output_grid.tolist()
351
+
352
+ min_top = min(obj[0] for obj in objects)
353
+ max_bottom = max(obj[1] for obj in objects)
354
+
355
+ for (min_r, max_r, min_c, max_c, obj_color, pixels) in objects:
356
+ if min_r == min_top or max_r == max_bottom:
357
+ continue
358
+ for r, c in pixels:
359
+ output_grid[r][c] = obj_color
360
+
361
+ return output_grid.tolist()
362
+
363
+ def extract_topmost_object(grid):
364
+ """Extracts the top-most object from the grid, crops it, and returns it as a new grid."""
365
+ objects = detect_objects(grid)
366
+ if not objects:
367
+ return grid
368
+
369
+ topmost_object = min(objects, key=lambda obj: obj[0]) # obj[0] is min_r
370
+ min_r, max_r, min_c, max_c, obj_color, pixels = topmost_object
371
+ cropped_height = max_r - min_r + 1
372
+ cropped_width = max_c - min_c + 1
373
+ cropped_grid = np.zeros((cropped_height, cropped_width), dtype=int)
374
+
375
+ for r, c in pixels:
376
+ cropped_grid[r - min_r, c - min_c] = obj_color
377
+
378
+ return cropped_grid.tolist()
379
+
380
+ def swap_objects(grid):
381
+ """Swaps detected objects in the grid."""
382
+ objects = detect_objects(grid)
383
+ objects = sorted(objects, key=lambda obj: obj[1]) # Sort by vertical position
384
+
385
+ object_positions = [obj[5] for obj in objects] # obj[5] contains pixels
386
+ object_colors = [obj[4] for obj in objects] # obj[4] is color
387
+ swapped_positions = object_positions[::-1]
388
+
389
+ new_grid = np.zeros_like(grid)
390
+ for color, new_positions in zip(object_colors, swapped_positions):
391
+ for r, c in new_positions:
392
+ new_grid[r][c] = color
393
+
394
+ return new_grid.tolist()
395
+
396
+ # --- Pixel & Color Manipulation ---
397
+ def transform_blue_to_red(input_grid):
398
+ """Transforms all blue (1) pixels to red (2)."""
399
+ grid = np.array(input_grid)
400
+ return np.where(grid == 1, 2, grid).tolist()
401
+
402
+ def fill_downward(grid):
403
+ """Fills non-zero pixels downward, propagating their colors downwards in each column."""
404
+ height, width = len(grid), len(grid[0])
405
+ output_grid = np.array(grid)
406
+
407
+ for col in range(width):
408
+ fill_color = 0
409
+ for row in range(height):
410
+ if grid[row][col] != 0:
411
+ fill_color = grid[row][col]
412
+ if fill_color != 0:
413
+ output_grid[row][col] = fill_color
414
+ return output_grid.tolist()
415
+
416
+ def remove_below_horizontal_line(grid):
417
+ """Detects the first fully connected horizontal line and removes everything below it."""
418
+ height, width = len(grid), len(grid[0])
419
+ output_grid = np.array(grid)
420
+
421
+ for row in range(height):
422
+ if np.all(output_grid[row] != 0):
423
+ output_grid[row + 1:] = 0
424
+ break
425
+ return output_grid.tolist()
426
+
427
+ def find_center_pixel(grid):
428
+ """Finds the center of the grid and returns it as a 1x1 pixel grid."""
429
+ center_index = len(grid[0]) // 2
430
+ return [[grid[0][center_index]]]
431
+
432
+ def extract_largest_row(grid):
433
+ """Finds the row with the most non-zero elements and extracts it."""
434
+ grid = np.array(grid)
435
+ max_length = 0
436
+ longest_row = []
437
+
438
+ for row in grid:
439
+ row_values = row[row > 0]
440
+ if len(row_values) > max_length:
441
+ max_length = len(row_values)
442
+ longest_row = row_values.tolist()
443
+ return [longest_row]
444
+
445
+ def extract_dominant_colors(grid):
446
+ """Finds the two most dominant non-zero colors in the grid."""
447
+ flattened = [cell for row in grid for cell in row if cell != 0]
448
+ color_counts = Counter(flattened)
449
+
450
+ if not color_counts:
451
+ return [[]]
452
+ most_common_colors = [color for color, _ in color_counts.most_common(2)]
453
+ return [[color for color in most_common_colors]]
454
+
455
+ def remove_dominant_color(grid):
456
+ """Removes the most dominant color from the grid."""
457
+ color_counts = Counter(cell for row in grid for cell in row if cell != 0)
458
+
459
+ if color_counts:
460
+ dominant_color = max(color_counts, key=color_counts.get)
461
+ else:
462
+ return grid
463
+ return [[0 if cell == dominant_color else cell for cell in row] for row in grid]
464
+
465
+ def find_least_dominant_pixel(grid):
466
+ """Finds the least occurring non-zero pixel in the grid."""
467
+ pixel_counts = {}
468
+
469
+ for row in grid:
470
+ for value in row:
471
+ if value != 0:
472
+ pixel_counts[value] = pixel_counts.get(value, 0) + 1
473
+
474
+ if not pixel_counts:
475
+ return None
476
+
477
+ return min(pixel_counts, key=pixel_counts.get)
478
+
479
+ def remove_least_dominant_pixel(grid):
480
+ """Removes the least dominant pixel from the grid."""
481
+ rows, cols = len(grid), len(grid[0])
482
+ least_dominant_pixel = find_least_dominant_pixel(grid)
483
+
484
+ if least_dominant_pixel is None:
485
+ return grid
486
+
487
+ new_grid = np.array(grid)
488
+ for x in range(rows):
489
+ for y in range(cols):
490
+ if grid[x][y] == least_dominant_pixel:
491
+ new_grid[x, y] = 0
492
+ return new_grid.tolist()
493
+
494
+ def upscale(input_grid, upscale_factor=3):
495
+ """Upscales the grid by expanding each pixel into a 3x3 block."""
496
+ def expand_pixel_with_grid(pixel, input_grid):
497
+ if pixel == 0:
498
+ return np.zeros((upscale_factor, upscale_factor), dtype=int)
499
+ else:
500
+ return input_grid
501
+
502
+ input_rows, input_cols = len(input_grid), len(input_grid[0])
503
+ output_grid = np.zeros((input_rows * upscale_factor, input_cols * upscale_factor), dtype=int)
504
+
505
+ for r in range(input_rows):
506
+ for c in range(input_cols):
507
+ expanded_block = expand_pixel_with_grid(input_grid[r][c], input_grid)
508
+ output_grid[r * upscale_factor: (r + 1) * upscale_factor, c * upscale_factor: (c + 1) * upscale_factor] = expanded_block
509
+
510
+ return output_grid
511
+
512
+ def remove_center_object(grid):
513
+ """Removes anything located at the center of the grid."""
514
+ height, width = len(grid), len(grid[0])
515
+ center_r, center_c = height // 2, width // 2
516
+ grid = np.array(grid)
517
+
518
+ center_value = grid[center_r, center_c]
519
+ if center_value != 0:
520
+ grid[grid == center_value] = 0
521
+ return grid.tolist()
522
+ import numpy as np
523
+
524
+ def draw_horizontal_vertical(grid):
525
+ """Adds a horizontal or vertical line of 8s based on object orientation."""
526
+ if grid is None or len(grid) == 0 or len(grid[0]) == 0:
527
+ print("ERROR: Grid is empty. Cannot apply draw_horizontal_vertical.")
528
+ return grid
529
+
530
+ rows, cols = len(grid), len(grid[0])
531
+ print(f"Grid Shape Before Modification: {rows}x{cols}") # Debugging Info
532
+
533
+ new_grid = np.array(grid)
534
+
535
+ for r in range(rows):
536
+ new_grid[r][-1] = 8 # Rightmost column
537
+
538
+ for c in range(cols):
539
+ new_grid[0][c] = 8 # Topmost row
540
+
541
+ return new_grid.tolist()
542
+
concept--main/fittnes.py ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from typing import List, Tuple
3
+ from Node import Node
4
+
5
+ def evaluate_fitness(program: Node, input_output_pairs: List[Tuple[np.ndarray, np.ndarray]]) -> int:
6
+ fitness = 0
7
+ for input_grid, expected_output in input_output_pairs:
8
+ try:
9
+ output = program.evaluate(input_grid)
10
+ if np.array_equal(output, expected_output):
11
+ fitness += 1
12
+ except Exception as e:
13
+ print(f"Error during fitness evaluation: {e}")
14
+ pass
15
+ return fitness
concept--main/interface.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+
3
+
4
+ from flask import Flask, request, jsonify
5
+ from Vit_concept import run_inference, model
6
+ from GP import genetic_programming
7
+ import traceback
8
+ import os
9
+
10
+ app = Flask(__name__)
11
+
12
+ @app.route('/')
13
+ def home():
14
+ return "API is running."
15
+
16
+ @app.route('/run', methods=['POST'])
17
+ def run_model():
18
+ try:
19
+ data = request.get_json(force=True) # force=True handles edge cases where headers are weird
20
+ input_output_pairs = []
21
+ predicted_HLCs = []
22
+
23
+ # Debugging: Log sample count
24
+ print(f"Received {len(data.get('train', []))} training samples")
25
+
26
+ for sample in data["train"]:
27
+ input_grid = sample["input"]
28
+ output_grid = sample["output"]
29
+
30
+ # Debug step
31
+ print("Running run_inference on a sample...")
32
+ concept_label, *_ = run_inference(model, input_grid, output_grid)
33
+ predicted_HLCs.append(concept_label)
34
+ input_output_pairs.append((input_grid, output_grid))
35
+
36
+ predicted_HLCs = list(set(predicted_HLCs))
37
+
38
+ print("Calling genetic_programming...")
39
+ best_program, generations = genetic_programming(
40
+ input_output_pairs=input_output_pairs,
41
+ population_size=30,
42
+ generations=10,
43
+ mutation_rate=0.2,
44
+ crossover_rate=0.7,
45
+ max_depth=3,
46
+ predicted_HLCs=predicted_HLCs
47
+ )
48
+
49
+ print("Returning response...")
50
+ return jsonify({
51
+ "best_program": str(best_program)
52
+ })
53
+ except Exception as e:
54
+ print("🔥 ERROR in /run route!")
55
+ print(traceback.format_exc()) # Show full error trace in Render logs
56
+ return jsonify({"error": str(e)}), 500
57
+
58
+ if __name__ == "__main__":
59
+ port = int(os.environ.get("PORT", 10000))
60
+ print(f"Starting server on port {port}...")
61
+ app.run(host="0.0.0.0", port=port)
concept--main/model/final_cls_model ADDED
@@ -0,0 +1 @@
 
 
1
+
concept--main/model/final_cls_modell.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:486ab5a17386db9931588c63636f732a53716f25347b41954f67ba47bc79c5be
3
+ size 11069076
concept--main/requirements.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ Flask
2
+ Flask-Cors
3
+ torch
4
+ numpy
5
+ scikit-learn
6
+ transformers
7
+ pandas
8
+ matplotlib
9
+ numpy
concept--main/task_loader.py ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import matplotlib.pyplot as plt
3
+ from matplotlib import colors
4
+ import os
5
+ import json
6
+ import numpy as np
7
+
8
+ #Notes
9
+
10
+ " directory_path:str keeps the path containing the tasks"
11
+ "tasks:list of tuples containing the the task filename and the task data "
12
+ "task_idx:index of the current task in the current iteration"
13
+ "task_file name:str name of the task file being processed"
14
+ "task_data: dictionary containing the task data basically the input and the output grids"
15
+ "input_output_pairs: list of tuples containing the input and the output grids"
16
+
17
+ def load_tasks_from_directory(directory_path):
18
+ tasks = []
19
+ for filename in os.listdir(directory_path):
20
+ if filename.endswith(".json"):
21
+ filepath = os.path.join(directory_path, filename)
22
+ with open(filepath, 'r') as file:
23
+ task_data = json.load(file)
24
+ tasks.append((filename, task_data))
25
+ return tasks
26
+
27
+ def prepare_input_output_pairs(task_data):
28
+ input_output_pairs = []
29
+ for example in task_data["train"]:
30
+ input_grid = np.array(example["input"], dtype=int)
31
+ output_grid = np.array(example["output"], dtype=int)
32
+ input_output_pairs.append((input_grid, output_grid))
33
+ return input_output_pairs
concept--main/tokenizer_vs22_extendarctokens/special_tokens_map.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "cls_token": "<cls>",
4
+ "eos_token": "</s>",
5
+ "mask_token": "<mask>",
6
+ "pad_token": "<pad>",
7
+ "sep_token": "<sep>",
8
+ "unk_token": "<unk>"
9
+ }
concept--main/tokenizer_vs22_extendarctokens/tokenizer.json ADDED
@@ -0,0 +1,241 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "version": "1.0",
3
+ "truncation": null,
4
+ "padding": null,
5
+ "added_tokens": [
6
+ {
7
+ "id": 0,
8
+ "content": "<s>",
9
+ "single_word": false,
10
+ "lstrip": false,
11
+ "rstrip": false,
12
+ "normalized": false,
13
+ "special": true
14
+ },
15
+ {
16
+ "id": 1,
17
+ "content": "</s>",
18
+ "single_word": false,
19
+ "lstrip": false,
20
+ "rstrip": false,
21
+ "normalized": false,
22
+ "special": true
23
+ },
24
+ {
25
+ "id": 2,
26
+ "content": "<unk>",
27
+ "single_word": false,
28
+ "lstrip": false,
29
+ "rstrip": false,
30
+ "normalized": false,
31
+ "special": true
32
+ },
33
+ {
34
+ "id": 3,
35
+ "content": "<cls>",
36
+ "single_word": false,
37
+ "lstrip": false,
38
+ "rstrip": false,
39
+ "normalized": false,
40
+ "special": true
41
+ },
42
+ {
43
+ "id": 4,
44
+ "content": "<sep>",
45
+ "single_word": false,
46
+ "lstrip": false,
47
+ "rstrip": false,
48
+ "normalized": false,
49
+ "special": true
50
+ },
51
+ {
52
+ "id": 5,
53
+ "content": "<pad>",
54
+ "single_word": false,
55
+ "lstrip": false,
56
+ "rstrip": false,
57
+ "normalized": false,
58
+ "special": true
59
+ },
60
+ {
61
+ "id": 6,
62
+ "content": "<mask>",
63
+ "single_word": false,
64
+ "lstrip": false,
65
+ "rstrip": false,
66
+ "normalized": false,
67
+ "special": true
68
+ },
69
+ {
70
+ "id": 7,
71
+ "content": "<arc_0>",
72
+ "single_word": false,
73
+ "lstrip": false,
74
+ "rstrip": false,
75
+ "normalized": true,
76
+ "special": false
77
+ },
78
+ {
79
+ "id": 8,
80
+ "content": "<arc_1>",
81
+ "single_word": false,
82
+ "lstrip": false,
83
+ "rstrip": false,
84
+ "normalized": true,
85
+ "special": false
86
+ },
87
+ {
88
+ "id": 9,
89
+ "content": "<arc_2>",
90
+ "single_word": false,
91
+ "lstrip": false,
92
+ "rstrip": false,
93
+ "normalized": true,
94
+ "special": false
95
+ },
96
+ {
97
+ "id": 10,
98
+ "content": "<arc_3>",
99
+ "single_word": false,
100
+ "lstrip": false,
101
+ "rstrip": false,
102
+ "normalized": true,
103
+ "special": false
104
+ },
105
+ {
106
+ "id": 11,
107
+ "content": "<arc_4>",
108
+ "single_word": false,
109
+ "lstrip": false,
110
+ "rstrip": false,
111
+ "normalized": true,
112
+ "special": false
113
+ },
114
+ {
115
+ "id": 12,
116
+ "content": "<arc_5>",
117
+ "single_word": false,
118
+ "lstrip": false,
119
+ "rstrip": false,
120
+ "normalized": true,
121
+ "special": false
122
+ },
123
+ {
124
+ "id": 13,
125
+ "content": "<arc_6>",
126
+ "single_word": false,
127
+ "lstrip": false,
128
+ "rstrip": false,
129
+ "normalized": true,
130
+ "special": false
131
+ },
132
+ {
133
+ "id": 14,
134
+ "content": "<arc_7>",
135
+ "single_word": false,
136
+ "lstrip": false,
137
+ "rstrip": false,
138
+ "normalized": true,
139
+ "special": false
140
+ },
141
+ {
142
+ "id": 15,
143
+ "content": "<arc_8>",
144
+ "single_word": false,
145
+ "lstrip": false,
146
+ "rstrip": false,
147
+ "normalized": true,
148
+ "special": false
149
+ },
150
+ {
151
+ "id": 16,
152
+ "content": "<arc_9>",
153
+ "single_word": false,
154
+ "lstrip": false,
155
+ "rstrip": false,
156
+ "normalized": true,
157
+ "special": false
158
+ },
159
+ {
160
+ "id": 17,
161
+ "content": "<arc_endxgrid>",
162
+ "single_word": false,
163
+ "lstrip": false,
164
+ "rstrip": false,
165
+ "normalized": true,
166
+ "special": false
167
+ },
168
+ {
169
+ "id": 18,
170
+ "content": "<arc_endygrid>",
171
+ "single_word": false,
172
+ "lstrip": false,
173
+ "rstrip": false,
174
+ "normalized": true,
175
+ "special": false
176
+ },
177
+ {
178
+ "id": 19,
179
+ "content": "<arc_endxygrid>",
180
+ "single_word": false,
181
+ "lstrip": false,
182
+ "rstrip": false,
183
+ "normalized": true,
184
+ "special": false
185
+ },
186
+ {
187
+ "id": 20,
188
+ "content": "<arc_pad>",
189
+ "single_word": false,
190
+ "lstrip": false,
191
+ "rstrip": false,
192
+ "normalized": true,
193
+ "special": false
194
+ },
195
+ {
196
+ "id": 21,
197
+ "content": "<arc_nl>",
198
+ "single_word": false,
199
+ "lstrip": false,
200
+ "rstrip": false,
201
+ "normalized": true,
202
+ "special": false
203
+ }
204
+ ],
205
+ "normalizer": {
206
+ "type": "Sequence",
207
+ "normalizers": [
208
+ {
209
+ "type": "NFD"
210
+ },
211
+ {
212
+ "type": "StripAccents"
213
+ }
214
+ ]
215
+ },
216
+ "pre_tokenizer": {
217
+ "type": "Whitespace"
218
+ },
219
+ "post_processor": null,
220
+ "decoder": null,
221
+ "model": {
222
+ "type": "BPE",
223
+ "dropout": null,
224
+ "unk_token": "<unk>",
225
+ "continuing_subword_prefix": null,
226
+ "end_of_word_suffix": null,
227
+ "fuse_unk": false,
228
+ "byte_fallback": false,
229
+ "ignore_merges": false,
230
+ "vocab": {
231
+ "<s>": 0,
232
+ "</s>": 1,
233
+ "<unk>": 2,
234
+ "<cls>": 3,
235
+ "<sep>": 4,
236
+ "<pad>": 5,
237
+ "<mask>": 6
238
+ },
239
+ "merges": []
240
+ }
241
+ }
concept--main/tokenizer_vs22_extendarctokens/tokenizer_config.json ADDED
@@ -0,0 +1,192 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "</s>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "<unk>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<cls>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "<sep>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "5": {
44
+ "content": "<pad>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "6": {
52
+ "content": "<mask>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "7": {
60
+ "content": "<arc_0>",
61
+ "lstrip": false,
62
+ "normalized": true,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": false
66
+ },
67
+ "8": {
68
+ "content": "<arc_1>",
69
+ "lstrip": false,
70
+ "normalized": true,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": false
74
+ },
75
+ "9": {
76
+ "content": "<arc_2>",
77
+ "lstrip": false,
78
+ "normalized": true,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": false
82
+ },
83
+ "10": {
84
+ "content": "<arc_3>",
85
+ "lstrip": false,
86
+ "normalized": true,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": false
90
+ },
91
+ "11": {
92
+ "content": "<arc_4>",
93
+ "lstrip": false,
94
+ "normalized": true,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": false
98
+ },
99
+ "12": {
100
+ "content": "<arc_5>",
101
+ "lstrip": false,
102
+ "normalized": true,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": false
106
+ },
107
+ "13": {
108
+ "content": "<arc_6>",
109
+ "lstrip": false,
110
+ "normalized": true,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": false
114
+ },
115
+ "14": {
116
+ "content": "<arc_7>",
117
+ "lstrip": false,
118
+ "normalized": true,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": false
122
+ },
123
+ "15": {
124
+ "content": "<arc_8>",
125
+ "lstrip": false,
126
+ "normalized": true,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": false
130
+ },
131
+ "16": {
132
+ "content": "<arc_9>",
133
+ "lstrip": false,
134
+ "normalized": true,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": false
138
+ },
139
+ "17": {
140
+ "content": "<arc_endxgrid>",
141
+ "lstrip": false,
142
+ "normalized": true,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": false
146
+ },
147
+ "18": {
148
+ "content": "<arc_endygrid>",
149
+ "lstrip": false,
150
+ "normalized": true,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": false
154
+ },
155
+ "19": {
156
+ "content": "<arc_endxygrid>",
157
+ "lstrip": false,
158
+ "normalized": true,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": false
162
+ },
163
+ "20": {
164
+ "content": "<arc_pad>",
165
+ "lstrip": false,
166
+ "normalized": true,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": false
170
+ },
171
+ "21": {
172
+ "content": "<arc_nl>",
173
+ "lstrip": false,
174
+ "normalized": true,
175
+ "rstrip": false,
176
+ "single_word": false,
177
+ "special": false
178
+ }
179
+ },
180
+ "bos_token": "<s>",
181
+ "clean_up_tokenization_spaces": true,
182
+ "cls_token": "<cls>",
183
+ "eos_token": "</s>",
184
+ "mask_token": "<mask>",
185
+ "model_max_length": 1000000000000000019884624838656,
186
+ "pad_token": "<pad>",
187
+ "padding_side": "right",
188
+ "sep_token": "<sep>",
189
+ "tokenizer_class": "PreTrainedTokenizerFast",
190
+ "truncation_side": "right",
191
+ "unk_token": "<unk>"
192
+ }
concept--main/tokenizer_vs22_extendarctokens/tt ADDED
@@ -0,0 +1 @@
 
 
1
+
concept--main/utils.py ADDED
@@ -0,0 +1,135 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import matplotlib.pyplot as plt
2
+ from matplotlib.colors import ListedColormap, Normalize
3
+
4
+ from random import choice, randint, sample, shuffle, uniform
5
+
6
+ from dsl import *
7
+
8
+
9
+ global rng
10
+ rng = []
11
+
12
+
13
+ def unifint(
14
+ diff_lb: float,
15
+ diff_ub: float,
16
+ bounds: Tuple[int, int]
17
+ ) -> int:
18
+ """
19
+ diff_lb: lower bound for difficulty, must be in range [0, diff_ub]
20
+ diff_ub: upper bound for difficulty, must be in range [diff_lb, 1]
21
+ bounds: interval [a, b] determining the integer values that can be sampled
22
+ """
23
+ a, b = bounds
24
+ d = uniform(diff_lb, diff_ub)
25
+ global rng
26
+ rng.append(d)
27
+ return min(max(a, round(a + (b - a) * d)), b)
28
+
29
+
30
+ def is_grid(
31
+ grid: Any
32
+ ) -> bool:
33
+ """
34
+ returns True if and only if argument is a valid grid
35
+ """
36
+ if not isinstance(grid, tuple):
37
+ return False
38
+ if not 0 < len(grid) <= 30:
39
+ return False
40
+ if not all(isinstance(r, tuple) for r in grid):
41
+ return False
42
+ if not all(0 < len(r) <= 30 for r in grid):
43
+ return False
44
+ if not len(set(len(r) for r in grid)) == 1:
45
+ return False
46
+ if not all(all(isinstance(x, int) for x in r) for r in grid):
47
+ return False
48
+ if not all(all(0 <= x <= 9 for x in r) for r in grid):
49
+ return False
50
+ return True
51
+
52
+
53
+ def strip_prefix(
54
+ string: str,
55
+ prefix: str
56
+ ) -> str:
57
+ """
58
+ removes prefix
59
+ """
60
+ return string[len(prefix):]
61
+
62
+
63
+ def format_grid(
64
+ grid: List[List[int]]
65
+ ) -> Grid:
66
+ """
67
+ grid type casting
68
+ """
69
+ return tuple(tuple(row) for row in grid)
70
+
71
+
72
+ def format_example(
73
+ example: dict
74
+ ) -> dict:
75
+ """
76
+ example data type
77
+ """
78
+ return {
79
+ 'input': format_grid(example['input']),
80
+ 'output': format_grid(example['output'])
81
+ }
82
+
83
+
84
+ def format_task(
85
+ task: dict
86
+ ) -> dict:
87
+ """
88
+ task data type
89
+ """
90
+ return {
91
+ 'train': [format_example(example) for example in task['train']],
92
+ 'test': [format_example(example) for example in task['test']]
93
+ }
94
+
95
+
96
+ def plot_task(
97
+ task: List[dict],
98
+ title: str = None
99
+ ) -> None:
100
+ """
101
+ displays a task
102
+ """
103
+ cmap = ListedColormap([
104
+ '#000', '#0074D9', '#FF4136', '#2ECC40', '#FFDC00',
105
+ '#AAAAAA', '#F012BE', '#FF851B', '#7FDBFF', '#870C25'
106
+ ])
107
+ norm = Normalize(vmin=0, vmax=9)
108
+ args = {'cmap': cmap, 'norm': norm}
109
+ height = 2
110
+ width = len(task)
111
+ figure_size = (width * 3, height * 3)
112
+ figure, axes = plt.subplots(height, width, figsize=figure_size)
113
+ for column, example in enumerate(task):
114
+ axes[0, column].imshow(example['input'], **args)
115
+ axes[1, column].imshow(example['output'], **args)
116
+ axes[0, column].axis('off')
117
+ axes[1, column].axis('off')
118
+ if title is not None:
119
+ figure.suptitle(title, fontsize=20)
120
+ plt.subplots_adjust(wspace=0.1, hspace=0.1)
121
+ plt.show()
122
+
123
+
124
+ def fix_bugs(
125
+ dataset: dict
126
+ ) -> None:
127
+ """
128
+ fixes bugs in the original ARC training dataset
129
+ """
130
+ dataset['a8d7556c']['train'][2]['output'] = fill(dataset['a8d7556c']['train'][2]['output'], 2, {(8, 12), (9, 12)})
131
+ dataset['6cf79266']['train'][2]['output'] = fill(dataset['6cf79266']['train'][2]['output'], 1, {(6, 17), (7, 17), (8, 15), (8, 16), (8, 17)})
132
+ dataset['469497ad']['train'][1]['output'] = fill(dataset['469497ad']['train'][1]['output'], 7, {(5, 12), (5, 13), (5, 14)})
133
+ dataset['9edfc990']['train'][1]['output'] = fill(dataset['9edfc990']['train'][1]['output'], 1, {(6, 13)})
134
+ dataset['e5062a87']['train'][1]['output'] = fill(dataset['e5062a87']['train'][1]['output'], 2, {(1, 3), (1, 4), (1, 5), (1, 6)})
135
+ dataset['e5062a87']['train'][0]['output'] = fill(dataset['e5062a87']['train'][0]['output'], 2, {(5, 2), (6, 3), (3, 6), (4, 7)})
concept--main/visualization.py ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import numpy as np
3
+ from graphviz import Digraph
4
+ import os
5
+ import matplotlib.pyplot as plt
6
+ import matplotlib.colors as colors
7
+
8
+ #Note
9
+ "visualization functions"
10
+
11
+
12
+ def execute_program(program, input_grid) :
13
+ return program.evaluate(input_grid)
14
+
15
+ def save_tree_as_dot(program, filename):
16
+ dot = Digraph(comment='Program Tree')
17
+ def add_nodes_edges(node):
18
+ if node.children:
19
+ node_label = f"{node.value}\nID:{node.id}"
20
+ dot.node(str(node.id), node_label, shape='box', style='filled', color='lightblue')
21
+ else:
22
+ node_label = f"{node.value}\nID:{node.id}"
23
+ dot.node(str(node.id), node_label, shape='ellipse', style='filled', color='lightgreen')
24
+
25
+ for child in node.children:
26
+ dot.edge(str(node.id), str(child.id))
27
+ add_nodes_edges(child)
28
+
29
+ add_nodes_edges(program)
30
+ dot.render(filename, view=False, format='png')
31
+ print(f"Program tree saved as {filename}.png")
32
+
33
+ def generate_composite_dot(all_generations, filename):
34
+ dot = Digraph(comment='All Programs Across Generations', graph_attr={'compound': 'true', 'rankdir': 'TB'})
35
+ dot.attr(rankdir='TB')
36
+ for gen_idx, generation in enumerate(all_generations):
37
+ with dot.subgraph(name=f'cluster_gen_{gen_idx}') as c:
38
+ c.attr(label=f'Generation {gen_idx}')
39
+ c.attr(style='filled', color='lightgrey')
40
+ c.attr(rank='same')
41
+ for prog_idx, (program, fitness) in enumerate(generation.programs_with_fitness):
42
+ is_selected = program in generation.selected_programs
43
+ is_best = program == generation.best_program
44
+ if is_best:
45
+ node_color = 'gold'
46
+ node_shape = 'doublecircle'
47
+ elif is_selected:
48
+ node_color = 'orange'
49
+ node_shape = 'box'
50
+ else:
51
+ node_color = 'lightblue'
52
+ node_shape = 'ellipse'
53
+ def add_nodes_edges(node, parent_id: str = None):
54
+ label = f"{node.value}\nID:{node.id}"
55
+ dot.node(str(node.id), label, shape=node_shape, style='filled', color=node_color)
56
+ if parent_id:
57
+ dot.edge(parent_id, str(node.id))
58
+ for child in node.children:
59
+ add_nodes_edges(child, str(node.id))
60
+ add_nodes_edges(program)
61
+ output_path = dot.render(filename, view=False, format='png')
62
+ print(f"All programs across generations saved as {output_path}")
63
+
64
+ # Visualization Functions
65
+ def plot_comparison(input_grid, expected_output, predicted_output, task_number):
66
+ fig, axs = plt.subplots(1, 3, figsize=(12, 4))
67
+ fig.suptitle(f'Task {task_number}')
68
+ cmap = colors.ListedColormap(['#000000', '#0074D9', '#FF4136', '#2ECC40', '#FFDC00', '#AAAAAA', '#F012BE', '#FF851B', '#7FDBFF', '#870C25'])
69
+ norm = colors.Normalize(vmin=0, vmax=9)
70
+
71
+ axs[0].imshow(input_grid, cmap=cmap, norm=norm)
72
+ axs[0].set_title("Input Grid")
73
+ axs[1].imshow(expected_output, cmap=cmap, norm=norm)
74
+ axs[1].set_title("Expected Output")
75
+ axs[2].imshow(predicted_output, cmap=cmap, norm=norm)
76
+ axs[2].set_title("Predicted Output")
77
+
78
+ plt.tight_layout()
79
+ plt.show()
80
+
81
+
82
+
extr.py ADDED
@@ -0,0 +1 @@
 
 
1
+ print("hello")