import numpy as np from graphviz import Digraph import os import matplotlib.pyplot as plt import matplotlib.colors as colors #Note "visualization functions" def execute_program(program, input_grid) : return program.evaluate(input_grid) def save_tree_as_dot(program, filename): dot = Digraph(comment='Program Tree') def add_nodes_edges(node): if node.children: node_label = f"{node.value}\nID:{node.id}" dot.node(str(node.id), node_label, shape='box', style='filled', color='lightblue') else: node_label = f"{node.value}\nID:{node.id}" dot.node(str(node.id), node_label, shape='ellipse', style='filled', color='lightgreen') for child in node.children: dot.edge(str(node.id), str(child.id)) add_nodes_edges(child) add_nodes_edges(program) dot.render(filename, view=False, format='png') print(f"Program tree saved as {filename}.png") def generate_composite_dot(all_generations, filename): dot = Digraph(comment='All Programs Across Generations', graph_attr={'compound': 'true', 'rankdir': 'TB'}) dot.attr(rankdir='TB') for gen_idx, generation in enumerate(all_generations): with dot.subgraph(name=f'cluster_gen_{gen_idx}') as c: c.attr(label=f'Generation {gen_idx}') c.attr(style='filled', color='lightgrey') c.attr(rank='same') for prog_idx, (program, fitness) in enumerate(generation.programs_with_fitness): is_selected = program in generation.selected_programs is_best = program == generation.best_program if is_best: node_color = 'gold' node_shape = 'doublecircle' elif is_selected: node_color = 'orange' node_shape = 'box' else: node_color = 'lightblue' node_shape = 'ellipse' def add_nodes_edges(node, parent_id: str = None): label = f"{node.value}\nID:{node.id}" dot.node(str(node.id), label, shape=node_shape, style='filled', color=node_color) if parent_id: dot.edge(parent_id, str(node.id)) for child in node.children: add_nodes_edges(child, str(node.id)) add_nodes_edges(program) output_path = dot.render(filename, view=False, format='png') print(f"All programs across generations saved as {output_path}") # Visualization Functions def plot_comparison(input_grid, expected_output, predicted_output, task_number): fig, axs = plt.subplots(1, 3, figsize=(12, 4)) fig.suptitle(f'Task {task_number}') cmap = colors.ListedColormap(['#000000', '#0074D9', '#FF4136', '#2ECC40', '#FFDC00', '#AAAAAA', '#F012BE', '#FF851B', '#7FDBFF', '#870C25']) norm = colors.Normalize(vmin=0, vmax=9) axs[0].imshow(input_grid, cmap=cmap, norm=norm) axs[0].set_title("Input Grid") axs[1].imshow(expected_output, cmap=cmap, norm=norm) axs[1].set_title("Expected Output") axs[2].imshow(predicted_output, cmap=cmap, norm=norm) axs[2].set_title("Predicted Output") plt.tight_layout() plt.show()