Spaces:
Sleeping
Sleeping
Create outfit.py
Browse files
outfit.py
ADDED
|
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import APIRouter
|
| 2 |
+
from pydantic import BaseModel
|
| 3 |
+
from typing import List
|
| 4 |
+
import requests
|
| 5 |
+
import json
|
| 6 |
+
import os
|
| 7 |
+
|
| 8 |
+
router = APIRouter(prefix="/outfit", tags=["Outfit"])
|
| 9 |
+
|
| 10 |
+
WARDROBE_API_URL = "https://wardrobestudio.net/wardrobe/items"
|
| 11 |
+
HF_API_URL = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.1"
|
| 12 |
+
HF_TOKEN = os.getenv("HF_TOKEN") # Set in Hugging Face Secrets
|
| 13 |
+
HEADERS = {"Authorization": f"Bearer {HF_TOKEN}"}
|
| 14 |
+
|
| 15 |
+
class Item(BaseModel):
|
| 16 |
+
id: str
|
| 17 |
+
label: str
|
| 18 |
+
image_url: str
|
| 19 |
+
|
| 20 |
+
class OutfitSuggestion(BaseModel):
|
| 21 |
+
day: str
|
| 22 |
+
items: List[Item]
|
| 23 |
+
|
| 24 |
+
def classify_with_clip(image_url: str) -> str:
|
| 25 |
+
return "jacket" if "jacket" in image_url.lower() else "clothing"
|
| 26 |
+
|
| 27 |
+
def get_llm_recommendation(items: List[dict], weather_forecast: List[str]) -> List[dict]:
|
| 28 |
+
prompt = f"""
|
| 29 |
+
You are a fashion stylist. Here is a user's wardrobe. Each item has a unique ID, label, and image:
|
| 30 |
+
{json.dumps(items, indent=2)}
|
| 31 |
+
7-day forecast: {', '.join(weather_forecast)}.
|
| 32 |
+
Suggest 7 outfits (2–3 item ids per day) for the week. Respond as JSON:
|
| 33 |
+
[
|
| 34 |
+
{{"day": "Monday", "items": ["item1", "item3"]}},
|
| 35 |
+
...
|
| 36 |
+
]
|
| 37 |
+
""".strip()
|
| 38 |
+
|
| 39 |
+
response = requests.post(HF_API_URL, headers=HEADERS, json={"inputs": prompt})
|
| 40 |
+
response.raise_for_status()
|
| 41 |
+
result = response.json()
|
| 42 |
+
|
| 43 |
+
if isinstance(result, dict) and "error" in result:
|
| 44 |
+
raise RuntimeError(f"Hugging Face API error: {result['error']}")
|
| 45 |
+
|
| 46 |
+
generated_text = result[0].get("generated_text", "")
|
| 47 |
+
return json.loads(generated_text.split("```")[0].strip())
|
| 48 |
+
|
| 49 |
+
@router.get("/weekly", response_model=List[OutfitSuggestion])
|
| 50 |
+
async def generate_outfits():
|
| 51 |
+
try:
|
| 52 |
+
res = requests.get(WARDROBE_API_URL)
|
| 53 |
+
res.raise_for_status()
|
| 54 |
+
wardrobe = res.json()
|
| 55 |
+
except Exception as e:
|
| 56 |
+
return [{"day": "Error", "items": [{"id": "error", "label": "Wardrobe fetch failed", "image_url": ""}]}]
|
| 57 |
+
|
| 58 |
+
labeled_items = []
|
| 59 |
+
for idx, item in enumerate(wardrobe):
|
| 60 |
+
image_path = item.get("image_url")
|
| 61 |
+
image_url = f"https://wardrobestudio.net{image_path}"
|
| 62 |
+
label = classify_with_clip(image_url)
|
| 63 |
+
labeled_items.append({
|
| 64 |
+
"id": f"item{idx+1}",
|
| 65 |
+
"label": label,
|
| 66 |
+
"image_url": image_path
|
| 67 |
+
})
|
| 68 |
+
|
| 69 |
+
weather = ["sunny", "rainy", "cloudy", "cold", "warm", "hot", "windy"]
|
| 70 |
+
|
| 71 |
+
try:
|
| 72 |
+
outfits_raw = get_llm_recommendation(labeled_items, weather)
|
| 73 |
+
result = []
|
| 74 |
+
for entry in outfits_raw:
|
| 75 |
+
matched_items = [item for item in labeled_items if item["id"] in entry.get("items", [])]
|
| 76 |
+
result.append({
|
| 77 |
+
"day": entry.get("day", "Unknown"),
|
| 78 |
+
"items": matched_items
|
| 79 |
+
})
|
| 80 |
+
return result
|
| 81 |
+
except Exception as e:
|
| 82 |
+
return [{"day": "Error", "items": [{"id": "error", "label": f"LLM failed: {e}", "image_url": ""}]}]
|