Spaces:
Runtime error
Runtime error
| # Copyright 2022 EleutherAI and The HuggingFace Inc. team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import argparse | |
| import gc | |
| import json | |
| import os | |
| import tempfile | |
| import warnings | |
| from typing import List | |
| import torch | |
| from tokenizers import AddedToken, processors | |
| from transformers import GenerationConfig, LlamaConfig, LlamaForCausalLM, LlamaTokenizer, PreTrainedTokenizerFast | |
| from transformers.convert_slow_tokenizer import TikTokenConverter | |
| try: | |
| from transformers import LlamaTokenizerFast | |
| except ImportError as e: | |
| warnings.warn(e) | |
| warnings.warn( | |
| "The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion" | |
| ) | |
| LlamaTokenizerFast = None | |
| """ | |
| Sample usage: | |
| ``` | |
| python src/transformers/models/llama/convert_llama_weights_to_hf.py \ | |
| --input_dir /path/to/downloaded/llama/weights --model_size 1B --llama_version 3.2 --output_dir /output/path | |
| ``` | |
| Thereafter, models can be loaded via: | |
| ```py | |
| from transformers import LlamaForCausalLM, LlamaTokenizer | |
| model = LlamaForCausalLM.from_pretrained("/output/path") | |
| tokenizer = LlamaTokenizer.from_pretrained("/output/path") | |
| ``` | |
| Important note: you need to be able to host the whole model in RAM to execute this script (even if the biggest versions | |
| come in several checkpoints they each contain a part of each weight of the model, so we need to load them all in RAM). | |
| If you want your tokenizer to add a bos automatically you should update the tokenizer._tokenizers.post_processor: | |
| ```py | |
| from tokenizers import processors | |
| bos = "<|begin_of_text|>" | |
| tokenizer._tokenizers.post_processor = processors.Sequence( | |
| [ | |
| processors.ByteLevel(trim_offsets=False), | |
| processors.TemplateProcessing( | |
| single=f"{bos}:0 $A:0", | |
| pair=f"{bos}:0 $A:0 {bos}:1 $B:1", | |
| special_tokens=[ | |
| (bos, tokenizer.encode(bos)), | |
| ], | |
| ), | |
| ] | |
| ) | |
| ``` | |
| """ | |
| NUM_SHARDS = { | |
| "1B": 1, | |
| "3B": 1, | |
| "7B": 1, | |
| "8B": 1, | |
| "8Bf": 1, | |
| "7Bf": 1, | |
| "13B": 2, | |
| "13Bf": 2, | |
| "34B": 4, | |
| "30B": 4, | |
| "65B": 8, | |
| "70B": 8, | |
| "70Bf": 8, | |
| "405B": 8, | |
| "405B-MP16": 16, | |
| } | |
| CONTEXT_LENGTH_FOR_VERSION = {"Guard-3": 131072, "3.2": 131072, "3.1": 131072, "3": 8192, "2": 4096, "1": 2048} | |
| BOS_ADDED_TOKEN = AddedToken( | |
| "<|begin_of_text|>", single_word=False, lstrip=False, rstrip=False, normalized=False, special=True | |
| ) | |
| EOS_ADDED_TOKEN = AddedToken( | |
| "<|end_of_text|>", single_word=False, lstrip=False, rstrip=False, normalized=False, special=True | |
| ) | |
| EOT_ADDED_TOKEN = AddedToken( | |
| "<|eot_id|>", single_word=False, lstrip=False, rstrip=False, normalized=False, special=True | |
| ) | |
| DEFAULT_LLAMA_SPECIAL_TOKENS = { | |
| "3": [ | |
| "<|begin_of_text|>", | |
| "<|end_of_text|>", | |
| "<|reserved_special_token_0|>", | |
| "<|reserved_special_token_1|>", | |
| "<|reserved_special_token_2|>", | |
| "<|reserved_special_token_3|>", | |
| "<|start_header_id|>", | |
| "<|end_header_id|>", | |
| "<|reserved_special_token_4|>", | |
| "<|eot_id|>", # end of turn | |
| ] | |
| + [f"<|reserved_special_token_{i}|>" for i in range(5, 256 - 5)], | |
| "3.1": [ | |
| "<|begin_of_text|>", | |
| "<|end_of_text|>", | |
| "<|reserved_special_token_0|>", | |
| "<|reserved_special_token_1|>", | |
| "<|finetune_right_pad_id|>", | |
| "<|reserved_special_token_2|>", | |
| "<|start_header_id|>", | |
| "<|end_header_id|>", | |
| "<|eom_id|>", # end of message | |
| "<|eot_id|>", # end of turn | |
| "<|python_tag|>", | |
| ] | |
| + [f"<|reserved_special_token_{i}|>" for i in range(3, 256 - 8)], | |
| "3.2": [ | |
| "<|begin_of_text|>", | |
| "<|end_of_text|>", | |
| "<|reserved_special_token_0|>", | |
| "<|reserved_special_token_1|>", | |
| "<|finetune_right_pad_id|>", | |
| "<|reserved_special_token_2|>", | |
| "<|start_header_id|>", | |
| "<|end_header_id|>", | |
| "<|eom_id|>", # end of message | |
| "<|eot_id|>", # end of turn | |
| "<|python_tag|>", | |
| ] | |
| + [f"<|reserved_special_token_{i}|>" for i in range(3, 256 - 8)], | |
| "Guard-3": [ | |
| "<|begin_of_text|>", | |
| "<|end_of_text|>", | |
| "<|reserved_special_token_0|>", | |
| "<|reserved_special_token_1|>", | |
| "<|finetune_right_pad_id|>", | |
| "<|reserved_special_token_2|>", | |
| "<|start_header_id|>", | |
| "<|end_header_id|>", | |
| "<|eom_id|>", # end of message | |
| "<|eot_id|>", # end of turn | |
| "<|python_tag|>", | |
| ] | |
| + [f"<|reserved_special_token_{i}|>" for i in range(3, 256 - 8)], | |
| } | |
| def is_llama_3(version): | |
| return version in ["3", "3.1", "3.2", "Guard-3"] | |
| def compute_intermediate_size(n, ffn_dim_multiplier=1, multiple_of=256): | |
| return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3)) + multiple_of - 1) // multiple_of) | |
| def read_json(path): | |
| with open(path, "r") as f: | |
| return json.load(f) | |
| def write_json(text, path): | |
| with open(path, "w") as f: | |
| json.dump(text, f) | |
| def write_model( | |
| model_path, | |
| input_base_path, | |
| model_size=None, | |
| safe_serialization=True, | |
| llama_version="1", | |
| vocab_size=None, | |
| num_shards=None, | |
| instruct=False, | |
| push_to_hub=False, | |
| ): | |
| print("Converting the model.") | |
| params = read_json(os.path.join(input_base_path, "params.json")) | |
| num_shards = NUM_SHARDS[model_size] if num_shards is None else num_shards | |
| params = params.get("model", params) | |
| n_layers = params["n_layers"] | |
| n_heads = params["n_heads"] | |
| n_heads_per_shard = n_heads // num_shards | |
| dim = params["dim"] | |
| dims_per_head = dim // n_heads | |
| base = params.get("rope_theta", 10000.0) | |
| inv_freq = 1.0 / (base ** (torch.arange(0, dims_per_head, 2).float() / dims_per_head)) | |
| if base > 10000.0 and not is_llama_3(llama_version): | |
| max_position_embeddings = 16384 | |
| else: | |
| max_position_embeddings = CONTEXT_LENGTH_FOR_VERSION[llama_version] | |
| if params.get("n_kv_heads", None) is not None: | |
| num_key_value_heads = params["n_kv_heads"] # for GQA / MQA | |
| num_key_value_heads_per_shard = num_key_value_heads // num_shards | |
| key_value_dim = dims_per_head * num_key_value_heads | |
| else: # compatibility with other checkpoints | |
| num_key_value_heads = n_heads | |
| num_key_value_heads_per_shard = n_heads_per_shard | |
| key_value_dim = dim | |
| # permute for sliced rotary | |
| def permute(w, n_heads, dim1=dim, dim2=dim): | |
| return w.view(n_heads, dim1 // n_heads // 2, 2, dim2).transpose(1, 2).reshape(dim1, dim2) | |
| with tempfile.TemporaryDirectory() as tmp_model_path: | |
| print(f"Fetching all parameters from the checkpoint at {input_base_path}.") | |
| # Load weights | |
| if num_shards == 1: | |
| # Not sharded | |
| # (The sharded implementation would also work, but this is simpler.) | |
| loaded = torch.load(os.path.join(input_base_path, "consolidated.00.pth"), map_location="cpu") | |
| else: | |
| # Sharded | |
| checkpoint_list = sorted([file for file in os.listdir(input_base_path) if file.endswith(".pth")]) | |
| print("Loading in order:", checkpoint_list) | |
| loaded = [torch.load(os.path.join(input_base_path, file), map_location="cpu") for file in checkpoint_list] | |
| param_count = 0 | |
| index_dict = {"weight_map": {}} | |
| for layer_i in range(n_layers): | |
| filename = f"pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin" | |
| if num_shards == 1: | |
| # Unsharded | |
| state_dict = { | |
| f"model.layers.{layer_i}.self_attn.q_proj.weight": permute( | |
| loaded[f"layers.{layer_i}.attention.wq.weight"], n_heads=n_heads | |
| ), | |
| f"model.layers.{layer_i}.self_attn.k_proj.weight": permute( | |
| loaded[f"layers.{layer_i}.attention.wk.weight"], | |
| n_heads=num_key_value_heads, | |
| dim1=key_value_dim, | |
| ), | |
| f"model.layers.{layer_i}.self_attn.v_proj.weight": loaded[f"layers.{layer_i}.attention.wv.weight"], | |
| f"model.layers.{layer_i}.self_attn.o_proj.weight": loaded[f"layers.{layer_i}.attention.wo.weight"], | |
| f"model.layers.{layer_i}.mlp.gate_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w1.weight"], | |
| f"model.layers.{layer_i}.mlp.down_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w2.weight"], | |
| f"model.layers.{layer_i}.mlp.up_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w3.weight"], | |
| f"model.layers.{layer_i}.input_layernorm.weight": loaded[ | |
| f"layers.{layer_i}.attention_norm.weight" | |
| ], | |
| f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[ | |
| f"layers.{layer_i}.ffn_norm.weight" | |
| ], | |
| } | |
| else: | |
| # Sharded | |
| # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share | |
| # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is | |
| # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. | |
| state_dict = { | |
| f"model.layers.{layer_i}.input_layernorm.weight": loaded[0][ | |
| f"layers.{layer_i}.attention_norm.weight" | |
| ].clone(), | |
| f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[0][ | |
| f"layers.{layer_i}.ffn_norm.weight" | |
| ].clone(), | |
| } | |
| state_dict[f"model.layers.{layer_i}.self_attn.q_proj.weight"] = permute( | |
| torch.cat( | |
| [ | |
| loaded[i][f"layers.{layer_i}.attention.wq.weight"].view( | |
| n_heads_per_shard, dims_per_head, dim | |
| ) | |
| for i in range(len(loaded)) | |
| ], | |
| dim=0, | |
| ).reshape(dim, dim), | |
| n_heads=n_heads, | |
| ) | |
| state_dict[f"model.layers.{layer_i}.self_attn.k_proj.weight"] = permute( | |
| torch.cat( | |
| [ | |
| loaded[i][f"layers.{layer_i}.attention.wk.weight"].view( | |
| num_key_value_heads_per_shard, dims_per_head, dim | |
| ) | |
| for i in range(len(loaded)) | |
| ], | |
| dim=0, | |
| ).reshape(key_value_dim, dim), | |
| num_key_value_heads, | |
| key_value_dim, | |
| dim, | |
| ) | |
| state_dict[f"model.layers.{layer_i}.self_attn.v_proj.weight"] = torch.cat( | |
| [ | |
| loaded[i][f"layers.{layer_i}.attention.wv.weight"].view( | |
| num_key_value_heads_per_shard, dims_per_head, dim | |
| ) | |
| for i in range(len(loaded)) | |
| ], | |
| dim=0, | |
| ).reshape(key_value_dim, dim) | |
| state_dict[f"model.layers.{layer_i}.self_attn.o_proj.weight"] = torch.cat( | |
| [loaded[i][f"layers.{layer_i}.attention.wo.weight"] for i in range(len(loaded))], dim=1 | |
| ) | |
| state_dict[f"model.layers.{layer_i}.mlp.gate_proj.weight"] = torch.cat( | |
| [loaded[i][f"layers.{layer_i}.feed_forward.w1.weight"] for i in range(len(loaded))], dim=0 | |
| ) | |
| state_dict[f"model.layers.{layer_i}.mlp.down_proj.weight"] = torch.cat( | |
| [loaded[i][f"layers.{layer_i}.feed_forward.w2.weight"] for i in range(len(loaded))], dim=1 | |
| ) | |
| state_dict[f"model.layers.{layer_i}.mlp.up_proj.weight"] = torch.cat( | |
| [loaded[i][f"layers.{layer_i}.feed_forward.w3.weight"] for i in range(len(loaded))], dim=0 | |
| ) | |
| state_dict[f"model.layers.{layer_i}.self_attn.rotary_emb.inv_freq"] = inv_freq | |
| for k, v in state_dict.items(): | |
| index_dict["weight_map"][k] = filename | |
| param_count += v.numel() | |
| torch.save(state_dict, os.path.join(tmp_model_path, filename)) | |
| filename = f"pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin" | |
| if num_shards == 1: | |
| # Unsharded | |
| state_dict = { | |
| "model.embed_tokens.weight": loaded["tok_embeddings.weight"], | |
| "model.norm.weight": loaded["norm.weight"], | |
| "lm_head.weight": loaded["output.weight"], | |
| } | |
| else: | |
| concat_dim = 0 if is_llama_3(llama_version) else 1 | |
| state_dict = { | |
| "model.norm.weight": loaded[0]["norm.weight"], | |
| "model.embed_tokens.weight": torch.cat( | |
| [loaded[i]["tok_embeddings.weight"] for i in range(len(loaded))], dim=concat_dim | |
| ), | |
| "lm_head.weight": torch.cat([loaded[i]["output.weight"] for i in range(len(loaded))], dim=0), | |
| } | |
| for k, v in state_dict.items(): | |
| index_dict["weight_map"][k] = filename | |
| param_count += v.numel() | |
| torch.save(state_dict, os.path.join(tmp_model_path, filename)) | |
| # Write configs | |
| index_dict["metadata"] = {"total_size": param_count * 2} | |
| write_json(index_dict, os.path.join(tmp_model_path, "pytorch_model.bin.index.json")) | |
| ffn_dim_multiplier = params["ffn_dim_multiplier"] if "ffn_dim_multiplier" in params else 1 | |
| multiple_of = params["multiple_of"] if "multiple_of" in params else 256 | |
| if is_llama_3(llama_version): | |
| bos_token_id = 128000 | |
| if instruct: | |
| eos_token_id = [128001, 128008, 128009] | |
| else: | |
| eos_token_id = 128001 | |
| else: | |
| bos_token_id = 1 | |
| eos_token_id = 2 | |
| if llama_version in ["3.1", "3.2", "Guard-3"]: | |
| rope_scaling = { | |
| "factor": 32.0 if llama_version == "3.2" else 8.0, | |
| "low_freq_factor": 1.0, | |
| "high_freq_factor": 4.0, | |
| "original_max_position_embeddings": 8192, | |
| "rope_type": "llama3", | |
| } | |
| else: | |
| rope_scaling = None | |
| config = LlamaConfig( | |
| hidden_size=dim, | |
| intermediate_size=compute_intermediate_size(dim, ffn_dim_multiplier, multiple_of), | |
| num_attention_heads=params["n_heads"], | |
| num_hidden_layers=params["n_layers"], | |
| rms_norm_eps=params["norm_eps"], | |
| num_key_value_heads=num_key_value_heads, | |
| vocab_size=vocab_size, | |
| rope_theta=base, | |
| rope_scaling=rope_scaling, | |
| max_position_embeddings=max_position_embeddings, | |
| bos_token_id=bos_token_id, | |
| eos_token_id=eos_token_id, | |
| tie_word_embeddings=True if llama_version in ["3.2"] else False, | |
| ) | |
| config.save_pretrained(tmp_model_path) | |
| generation_config = GenerationConfig( | |
| do_sample=True, | |
| temperature=0.6, | |
| top_p=0.9, | |
| bos_token_id=bos_token_id, | |
| eos_token_id=eos_token_id, | |
| ) | |
| generation_config.save_pretrained(tmp_model_path) | |
| # Make space so we can load the model properly now. | |
| del state_dict | |
| del loaded | |
| gc.collect() | |
| print("Loading the checkpoint in a Llama model.") | |
| model = LlamaForCausalLM.from_pretrained(tmp_model_path, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True) | |
| # Avoid saving this as part of the config. | |
| del model.config._name_or_path | |
| model.config.torch_dtype = torch.float16 | |
| print("Saving in the Transformers format.") | |
| if push_to_hub: | |
| print("Pushing to the hub.") | |
| model.push_to_hub(model_path, safe_serialization=safe_serialization, private=True, use_temp_dir=True) | |
| else: | |
| print("Saving to disk.") | |
| model.save_pretrained(model_path, safe_serialization=safe_serialization) | |
| class Llama3Converter(TikTokenConverter): | |
| def __init__(self, vocab_file, special_tokens=None, instruct=False, llama_version="3.2", **kwargs): | |
| super().__init__(vocab_file, additional_special_tokens=special_tokens, **kwargs) | |
| tokenizer = self.converted() | |
| # References for chat templates in instruct models | |
| templates_for_version = { | |
| "2": ("meta-llama/Llama-2-7b-chat-hf", "f5db02db724555f92da89c216ac04704f23d4590"), | |
| "3": ("meta-llama/Meta-Llama-3-8B-Instruct", "5f0b02c75b57c5855da9ae460ce51323ea669d8a"), | |
| "3.1": ("meta-llama/Llama-3.1-8B-Instruct", "0e9e39f249a16976918f6564b8830bc894c89659"), | |
| "3.2": ("meta-llama/Llama-3.2-1B-Instruct", "e9f8effbab1cbdc515c11ee6e098e3d5a9f51e14"), | |
| "Guard-3": ("meta-llama/Llama-Guard-3-1B", "acf7aafa60f0410f8f42b1fa35e077d705892029"), | |
| } | |
| # Add chat_template only if instruct is True. | |
| # Prevents a null chat_template, which triggers | |
| # a parsing warning in the Hub. | |
| additional_kwargs = {} | |
| if instruct or llama_version in ["Guard-3"]: | |
| model_id, revision = templates_for_version.get(llama_version, (None, None)) | |
| if model_id is not None: | |
| from transformers import AutoTokenizer | |
| t = AutoTokenizer.from_pretrained(model_id, revision=revision) | |
| additional_kwargs["chat_template"] = t.chat_template | |
| self.converted_tokenizer = PreTrainedTokenizerFast( | |
| tokenizer_object=tokenizer, | |
| bos_token="<|begin_of_text|>", | |
| eos_token="<|end_of_text|>" if not instruct else "<|eot_id|>", | |
| model_input_names=["input_ids", "attention_mask"], | |
| model_max_length=CONTEXT_LENGTH_FOR_VERSION[llama_version], | |
| clean_up_tokenization_spaces=True, | |
| **additional_kwargs, | |
| ) | |
| self.update_post_processor(self.converted_tokenizer) | |
| # finer special_tokens_map.json | |
| self.converted_tokenizer._bos_token = BOS_ADDED_TOKEN | |
| self.converted_tokenizer._eos_token = EOT_ADDED_TOKEN if instruct else EOS_ADDED_TOKEN | |
| # We can't do this while building the tokenizer because we have no easy access to the bos token id | |
| def update_post_processor(self, tokenizer): | |
| tokenizer._tokenizer.post_processor = processors.Sequence( | |
| [ | |
| processors.ByteLevel(trim_offsets=False), | |
| processors.TemplateProcessing( | |
| single="<|begin_of_text|> $A", | |
| pair="<|begin_of_text|>:0 $A:0 <|begin_of_text|>:1 $B:1", | |
| special_tokens=[ | |
| ("<|begin_of_text|>", tokenizer.convert_tokens_to_ids("<|begin_of_text|>")), | |
| ], | |
| ), | |
| ] | |
| ) | |
| def write_tokenizer( | |
| tokenizer_path, input_tokenizer_path, llama_version="2", special_tokens=None, instruct=False, push_to_hub=False | |
| ): | |
| print("Converting the tokenizer.") | |
| tokenizer_class = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast | |
| if is_llama_3(llama_version): | |
| tokenizer = Llama3Converter( | |
| input_tokenizer_path, | |
| special_tokens, | |
| instruct, | |
| llama_version, | |
| ).converted_tokenizer | |
| else: | |
| try: | |
| tokenizer = tokenizer_class(input_tokenizer_path) | |
| except Exception: | |
| raise ValueError( | |
| "Failed to instantiate tokenizer. Please, make sure you have sentencepiece and protobuf installed." | |
| ) | |
| if push_to_hub: | |
| print(f"Pushing a {tokenizer_class.__name__} to the Hub repo - {tokenizer_path}.") | |
| tokenizer.push_to_hub(tokenizer_path, private=True, use_temp_dir=True) | |
| else: | |
| print(f"Saving a {tokenizer_class.__name__} to {tokenizer_path}.") | |
| tokenizer.save_pretrained(tokenizer_path) | |
| return tokenizer | |
| def main(): | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument( | |
| "--input_dir", | |
| help="Location of Llama weights, which contains tokenizer.model and model folders", | |
| ) | |
| parser.add_argument( | |
| "--model_size", | |
| default=None, | |
| help="'f' Deprecated in favor of `num_shards`: models correspond to the finetuned versions, and are specific to the Llama2 official release. For more details on Llama2, checkout the original repo: https://huggingface.co/meta-llama", | |
| ) | |
| parser.add_argument( | |
| "--output_dir", | |
| help="Location to write HF model and tokenizer", | |
| ) | |
| parser.add_argument( | |
| "--push_to_hub", | |
| help="Whether or not to push the model to the hub at `output_dir` instead of saving it locally.", | |
| action="store_true", | |
| default=False, | |
| ) | |
| parser.add_argument( | |
| "--safe_serialization", action="store_true", default=True, help="Whether or not to save using `safetensors`." | |
| ) | |
| # Different Llama versions used different default values for max_position_embeddings, hence the need to be able to specify which version is being used. | |
| parser.add_argument( | |
| "--llama_version", | |
| choices=["1", "2", "3", "3.1", "3.2", "Guard-3"], | |
| default="1", | |
| type=str, | |
| help="Version of the Llama model to convert. Currently supports Llama1 and Llama2. Controls the context size", | |
| ) | |
| parser.add_argument( | |
| "--num_shards", | |
| default=None, | |
| type=int, | |
| help="The number of individual shards used for the model. Does not have to be the same as the number of consolidated_xx.pth", | |
| ) | |
| parser.add_argument( | |
| "--special_tokens", | |
| default=None, | |
| type=List[str], | |
| help="The list of special tokens that should be added to the model.", | |
| ) | |
| parser.add_argument( | |
| "--instruct", | |
| action="store_true", | |
| default=False, | |
| help="Whether the model is an instruct model or not. Will affect special tokens and chat template.", | |
| ) | |
| args = parser.parse_args() | |
| if args.model_size is None and args.num_shards is None: | |
| raise ValueError("You have to set at least `num_shards` if you are not giving the `model_size`") | |
| if args.special_tokens is None: | |
| # no special tokens by default | |
| args.special_tokens = DEFAULT_LLAMA_SPECIAL_TOKENS.get(str(args.llama_version), []) | |
| spm_path = os.path.join(args.input_dir, "tokenizer.model") | |
| vocab_size = len( | |
| write_tokenizer( | |
| args.output_dir, | |
| spm_path, | |
| llama_version=args.llama_version, | |
| special_tokens=args.special_tokens, | |
| instruct=args.instruct, | |
| push_to_hub=args.push_to_hub, | |
| ) | |
| ) | |
| if args.model_size != "tokenizer_only": | |
| write_model( | |
| model_path=args.output_dir, | |
| input_base_path=args.input_dir, | |
| model_size=args.model_size, | |
| safe_serialization=args.safe_serialization, | |
| llama_version=args.llama_version, | |
| vocab_size=vocab_size, | |
| num_shards=args.num_shards, | |
| instruct=args.instruct, | |
| push_to_hub=args.push_to_hub, | |
| ) | |
| if __name__ == "__main__": | |
| main() |