Spaces:
Running
on
Zero
Running
on
Zero
File size: 18,059 Bytes
ef51ddd a8b6e59 7833553 ef51ddd a8b6e59 fe1810a b71a9e5 7833553 1b8a47d ef51ddd 019d245 a8b6e59 2211110 5858004 cd4de4c 2211110 ef51ddd a8b6e59 d6c150b 55ac4a7 c4814b5 0d09f4a 2211110 0d09f4a c4814b5 a8b6e59 1b8a47d a8b6e59 ea40be6 a8b6e59 ef51ddd 55ac4a7 c5bcdb3 55ac4a7 ef51ddd 1b8a47d 55ac4a7 ef51ddd 9e56b98 019d245 7833553 9e56b98 b91fc6b 7c3ad3d 264de1a 7c3ad3d 264de1a 7c3ad3d 264de1a 7c3ad3d 1b8a47d 9e56b98 019d245 2211110 fe1810a 2211110 fe1810a 2211110 021306c a3571c2 019d245 9b896b6 019d245 7f58b81 019d245 a3571c2 019d245 021306c 7833553 c5bcdb3 d0509e1 1b8a47d d0509e1 ac0d0ca 7833553 4199235 3905e2e c3abe72 3905e2e c3abe72 3905e2e c3abe72 3905e2e 7f58b81 3905e2e 7f58b81 3905e2e 7f58b81 3905e2e 7f58b81 3905e2e 7f58b81 b71a9e5 7f58b81 7f3b65a a8b76d6 7f58b81 3905e2e 561724e 3905e2e 7f58b81 3905e2e f0a0056 3905e2e c3abe72 3905e2e c3abe72 3905e2e 9e56b98 3905e2e c3abe72 3905e2e c3abe72 3905e2e 4199235 3905e2e 2483f92 3905e2e 2483f92 3905e2e 2483f92 3905e2e 7f58b81 3905e2e 7f58b81 3905e2e 7f58b81 3905e2e 7f58b81 2dc5e25 7f58b81 3905e2e 7f58b81 3905e2e 7f58b81 48b5c5f 3905e2e 48b5c5f 3905e2e 7f58b81 3905e2e 0ae11fc 3905e2e 0ae11fc 3905e2e 561724e 3905e2e 7f58b81 021306c 3905e2e 2483f92 7f58b81 e792db9 a3571c2 ef51ddd 38ee90c c3c795c 38ee90c 021306c 7f58b81 a3571c2 2feb059 7207e01 9e56b98 2feb059 9e56b98 697effb 5ace2c9 2d01cbb 697effb 3905e2e 30ccf3c 697effb 9e56b98 5ace2c9 697effb 3905e2e 697effb 3905e2e 697effb 3905e2e 697effb a8b6e59 021306c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 |
import os
import re
import tempfile
import torch
import gradio as gr
from faster_whisper import BatchedInferencePipeline, WhisperModel
from pydub import AudioSegment, effects
from pyannote.audio import Pipeline as DiarizationPipeline
import opencc
import spaces # zeroGPU support
from funasr import AutoModel
from funasr.utils.postprocess_utils import rich_transcription_postprocess
from termcolor import cprint
import time
import torchaudio
from pyannote.audio.pipelines.utils.hook import ProgressHook
# —————— Model Lists ——————
WHISPER_MODELS = [
"SoybeanMilk/faster-whisper-Breeze-ASR-25",
"asadfgglie/faster-whisper-large-v3-zh-TW",
"deepdml/faster-whisper-large-v3-turbo-ct2",
"guillaumekln/faster-whisper-tiny",
"Systran/faster-whisper-large-v3",
"XA9/Belle-faster-whisper-large-v3-zh-punct",
"guillaumekln/faster-whisper-medium",
"guillaumekln/faster-whisper-small",
"guillaumekln/faster-whisper-base",
"Luigi/whisper-small-zh_tw-ct2",
]
SENSEVOICE_MODELS = [
"FunAudioLLM/SenseVoiceSmall",
"funasr/paraformer-zh",
]
# —————— Language Options ——————
WHISPER_LANGUAGES = [
"zh", "af","am","ar","as","az","ba","be","bg","bn","bo",
"br","bs","ca","cs","cy","da","de","el","en","es","et",
"eu","fa","fi","fo","fr","gl","gu","ha","haw","he","hi",
"hr","ht","hu","hy","id","is","it","ja","jw","ka","kk",
"km","kn","ko","la","lb","ln","lo","lt","lv","mg","mi",
"mk","ml","mn","mr","ms","mt","my","ne","nl","nn","no",
"oc","pa","pl","ps","pt","ro","ru","sa","sd","si","sk",
"sl","sn","so","sq","sr","su","sv","sw","ta","te","tg",
"th","tk","tl","tr","tt","uk","ur","uz","vi","yi","yo",
"yue", "auto",
]
SENSEVOICE_LANGUAGES = ["zh", "yue", "en", "ja", "ko", "auto", "nospeech"]
# —————— Caches ——————
whisper_pipes = {}
sense_models = {}
dar_pipe = None
converter = opencc.OpenCC('s2t')
# —————— Diarization Formatter ——————
def format_diarization_html(snippets):
palette = ["#e74c3c", "#3498db", "#27ae60", "#e67e22", "#9b59b6", "#16a085", "#f1c40f"]
speaker_colors = {}
html_lines = []
last_spk = None
for s in snippets:
if s.startswith("[") and "]" in s:
spk, txt = s[1:].split("]", 1)
spk, txt = spk.strip(), txt.strip()
else:
spk, txt = "", s.strip()
# hide empty lines
if not txt:
continue
# assign color if new speaker
if spk not in speaker_colors:
speaker_colors[spk] = palette[len(speaker_colors) % len(palette)]
color = speaker_colors[spk]
# simplify tag for same speaker
if spk == last_spk:
display = txt
else:
display = f"<strong>{spk}:</strong> {txt}"
last_spk = spk
html_lines.append(
f"<p style='margin:4px 0; font-family:monospace; color:{color};'>{display}</p>"
)
return "<div>" + "".join(html_lines) + "</div>"
# —————— Helpers ——————
# —————— Faster-Whisper Cache & Factory ——————
_fwhisper_models: dict[tuple[str, str], WhisperModel] = {}
def get_fwhisper_model(model_id: str, device: str) -> WhisperModel:
"""
Lazily load and cache WhisperModel(model_id) on 'cpu' or 'cuda:0'.
Uses float16 on GPU and int8 on CPU for speed.
"""
key = (model_id, device)
if key not in _fwhisper_models:
compute_type = "float16" if device.startswith("cuda") else "int8"
model = WhisperModel(
model_id,
device=device,
compute_type=compute_type,
)
_fwhisper_models[key] = BatchedInferencePipeline(model=model)
return _fwhisper_models[key]
def get_sense_model(model_id: str, device_str: str):
key = (model_id, device_str)
if key not in sense_models:
sense_models[key] = AutoModel(
model=model_id,
vad_model="fsmn-vad",
vad_kwargs={"max_single_segment_time": 300000},
device=device_str,
ban_emo_unk=False,
hub="hf",
)
return sense_models[key]
def get_diarization_pipe():
global dar_pipe
if dar_pipe is None:
token = os.getenv("HF_TOKEN") or os.getenv("HUGGINGFACE_TOKEN")
try:
dar_pipe = DiarizationPipeline.from_pretrained(
"pyannote/speaker-diarization-3.1",
use_auth_token=token or True
)
except Exception as e:
print(f"Failed to load pyannote/speaker-diarization-3.1: {e}\nFalling back to pyannote/[email protected].")
dar_pipe = DiarizationPipeline.from_pretrained(
"pyannote/[email protected]",
use_auth_token=token or True
)
return dar_pipe
# —————— Whisper Transcription ——————
def _transcribe_fwhisper_stream_common(
model_id,
language,
audio_path,
whisper_multilingual_en,
enable_punct,
backend,
device,
banner_text,
banner_color
):
"""
Core generator for streaming transcription with accumulation using Faster-Whisper.
Handles both CPU and CUDA backends; merges consecutive turns by the same speaker;
strips injected trailing punctuation; and appends a Chinese period to new speaker turns if missing.
Args:
model_id: Whisper model identifier
language: language code or "auto"
audio_path: path to audio file
whisper_multilingual_en: allow English in multilingual mode
enable_punct: whether to append a Chinese period on new speaker turns when missing
backend: "cpu" or "cuda"
device: torch.device for model and diarizer
banner_text: label for cprint (e.g. "CPU" or "CUDA")
banner_color: color for cprint
Yields:
("", format_diarization_html(snippets))
"""
import re
# Pattern to detect trailing punctuation
end_punct_pattern = r'[。!?…~~\.\!?]+$'
# Initialize whisper pipe
pipe = get_fwhisper_model(model_id, backend)
cprint(f'Whisper (faster-whisper) using {banner_text} [stream]', banner_color)
# Load diarizer and audio
diarizer = get_diarization_pipe()
waveform, sample_rate = torchaudio.load(audio_path)
if device.type == 'cuda':
waveform = waveform.to(device)
diarizer.to(device)
# Run diarization
with ProgressHook() as hook:
diary = diarizer({"waveform": waveform, "sample_rate": sample_rate}, hook=hook)
snippets = []
for turn, _, speaker in diary.itertracks(yield_label=True):
# Extract audio segment
start_ms = int(turn.start * 1000)
end_ms = int(turn.end * 1000)
segment = AudioSegment.from_file(audio_path)[start_ms:end_ms]
# Transcribe with faster-whisper
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp:
segment = effects.normalize(segment)
segment.export(tmp.name, format="wav")
segments, _ = pipe.transcribe(
tmp.name,
beam_size=3,
best_of=3,
language=None if language == "auto" else language,
vad_filter=True,
batch_size=16,
multilingual=whisper_multilingual_en,
)
os.unlink(tmp.name)
# Convert and clean text
raw_text = "".join(s.text for s in segments).strip()
text = converter.convert(raw_text)
if text:
tag = f"[{speaker}]"
if enable_punct and not re.search(end_punct_pattern, text):
text = f'{text}。'
else:
text = f'{text} '
if snippets and snippets[-1].startswith(tag):
# Same speaker: merge
prev_text = snippets[-1].split('] ', 1)[1]
snippets[-1] = f"{tag} {prev_text}{text}"
else:
# New speaker:
snippets.append(f"{tag} {text}")
# Yield accumulated HTML
yield "", format_diarization_html(snippets)
return
def _transcribe_fwhisper_cpu_stream(
model_id,
language,
audio_path,
whisper_multilingual_en,
enable_punct
):
"""
CPU wrapper for Faster-Whisper streaming transcription.
"""
yield from _transcribe_fwhisper_stream_common(
model_id,
language,
audio_path,
whisper_multilingual_en,
enable_punct,
backend="cpu",
device=torch.device('cpu'),
banner_text="CPU",
banner_color="red",
)
@spaces.GPU
def _transcribe_fwhisper_gpu_stream(
model_id,
language,
audio_path,
whisper_multilingual_en,
enable_punct
):
"""
CUDA wrapper for Faster-Whisper streaming transcription.
"""
yield from _transcribe_fwhisper_stream_common(
model_id,
language,
audio_path,
whisper_multilingual_en,
enable_punct,
backend="cuda",
device=torch.device('cuda'),
banner_text="CUDA",
banner_color="green",
)
def transcribe_fwhisper_stream(model_id, language, audio_path, device_sel, whisper_multilingual_en, enable_punct):
"""Dispatch to CPU or GPU streaming generators, preserving two-value yields."""
if device_sel == "GPU" and torch.cuda.is_available():
yield from _transcribe_fwhisper_gpu_stream(model_id, language, audio_path, whisper_multilingual_en, enable_punct)
else:
yield from _transcribe_fwhisper_cpu_stream(model_id, language, audio_path, whisper_multilingual_en, enable_punct)
# —————— SenseVoice Transcription ——————
def _transcribe_sense_stream_common(
model_id: str,
language: str,
audio_path: str,
enable_punct: bool,
backend: str,
device: torch.device,
banner_text: str,
banner_color: str
):
"""
Core generator for SenseVoiceSmall streaming transcription.
Handles CPU and CUDA; merges consecutive turns by the same speaker;
strips injected trailing punctuation; appends a Chinese period to new speaker turns if missing.
Args:
model_id: model identifier for SenseVoiceSmall
language: language code
audio_path: path to audio file
enable_punct: whether to keep ITN punctuation and append periods
backend: device spec for get_sense_model ("cpu" or "cuda:0")
device: torch.device for waveform & diarizer
banner_text: label for console banner
banner_color: color for console banner
Yields:
("", format_diarization_html(snippets))
"""
import re
# Pattern to detect trailing punctuation
end_punct_pattern = r'[。!?…~~\.\!?]+$'
# Load model
model = get_sense_model(model_id, backend)
cprint(f'SenseVoiceSmall using {banner_text} [stream]', banner_color)
# Prepare diarizer and audio
diarizer = get_diarization_pipe()
diarizer.to(device)
waveform, sample_rate = torchaudio.load(audio_path)
if device.type == 'cuda':
waveform = waveform.to(device)
# Run diarization
with ProgressHook() as hook:
diary = diarizer({"waveform": waveform, "sample_rate": sample_rate}, hook=hook)
snippets = []
cache = {}
for turn, _, speaker in diary.itertracks(yield_label=True):
start_ms = int(turn.start * 1000)
end_ms = int(turn.end * 1000)
segment = AudioSegment.from_file(audio_path)[start_ms:end_ms]
# Export and transcribe segment
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp:
segment.export(tmp.name, format="wav")
try:
segs = model.generate(
input=tmp.name,
cache=cache,
language=language,
use_itn=enable_punct,
batch_size_s=300
)
except Exception as e:
cprint(f'Error: {e}', 'red')
segs = None
os.unlink(tmp.name)
# Post-process text
if segs:
txt = rich_transcription_postprocess(segs[0]['text'])
# Remove all punctuation if disabled
if not enable_punct:
txt = re.sub(r"[^\w\s]", "", txt)
if txt:
txt = converter.convert(txt)
tag = f"[{speaker}]"
if enable_punct and not re.search(end_punct_pattern, txt):
txt = f'{txt}。'
else:
txt = f'{txt} '
if snippets and snippets[-1].startswith(tag):
# Same speaker: merge with previous
prev_text = snippets[-1].split('] ', 1)[1]
snippets[-1] = f"{tag} {prev_text}{txt}"
else:
# New speaker
snippets.append(f"{tag} {txt}")
# Yield accumulated HTML
yield "", format_diarization_html(snippets)
return
def _transcribe_sense_cpu_stream(
model_id: str,
language: str,
audio_path: str,
enable_punct: bool
):
"""
CPU wrapper for SenseVoiceSmall streaming transcription.
"""
yield from _transcribe_sense_stream_common(
model_id=model_id,
language=language,
audio_path=audio_path,
enable_punct=enable_punct,
backend="cpu",
device=torch.device('cpu'),
banner_text="CPU",
banner_color="red"
)
@spaces.GPU(duration=120)
def _transcribe_sense_gpu_stream(
model_id: str,
language: str,
audio_path: str,
enable_punct: bool
):
"""
CUDA wrapper for SenseVoiceSmall streaming transcription.
"""
yield from _transcribe_sense_stream_common(
model_id=model_id,
language=language,
audio_path=audio_path,
enable_punct=enable_punct,
backend="cuda:0",
device=torch.device('cuda'),
banner_text="CUDA",
banner_color="green"
)
def transcribe_sense_steam(model_id: str,
language: str,
audio_path: str,
enable_punct: bool,
device_sel: str):
if device_sel == "GPU" and torch.cuda.is_available():
yield from _transcribe_sense_gpu_stream(model_id, language, audio_path, enable_punct)
else:
yield from _transcribe_sense_cpu_stream(model_id, language, audio_path, enable_punct)
# —————— Gradio UI ——————
DEMO_CSS = """
.diar {
padding: 0.5rem;
color: #f1f1f1;
font-family: monospace;
font-size: 0.9rem;
}
"""
Demo = gr.Blocks(css=DEMO_CSS)
with Demo:
gr.Markdown("## Faster-Whisper vs. SenseVoice")
audio_input = gr.Audio(sources=["upload", "microphone"], type="filepath", label="Audio Input")
examples = gr.Examples(
examples=[["interview.mp3"], ["news.mp3"], ["meeting.mp3"]],
inputs=[audio_input],
label="Example Audio Files"
)
# ────────────────────────────────────────────────────────────────
# 1) CONTROL PANELS (still side-by-side)
with gr.Row():
with gr.Column():
gr.Markdown("### Faster-Whisper ASR")
whisper_dd = gr.Dropdown(choices=WHISPER_MODELS, value=WHISPER_MODELS[0], label="Whisper Model")
whisper_lang = gr.Dropdown(choices=WHISPER_LANGUAGES, value="auto", label="Whisper Language")
device_radio = gr.Radio(choices=["GPU","CPU"], value="GPU", label="Device")
whisper_punct_chk = gr.Checkbox(label="Enable Punctuation", value=True)
whisper_multilingual_en = gr.Checkbox(label="Multilingual", value=False)
btn_w = gr.Button("Transcribe with Faster-Whisper")
with gr.Column():
gr.Markdown("### FunASR SenseVoice ASR")
sense_dd = gr.Dropdown(choices=SENSEVOICE_MODELS, value=SENSEVOICE_MODELS[0], label="SenseVoice Model")
sense_lang = gr.Dropdown(choices=SENSEVOICE_LANGUAGES, value="auto", label="SenseVoice Language")
device_radio_s = gr.Radio(choices=["GPU","CPU"], value="GPU", label="Device")
sense_punct_chk = gr.Checkbox(label="Enable Punctuation", value=True)
btn_s = gr.Button("Transcribe with SenseVoice")
# ────────────────────────────────────────────────────────────────
# 2) SHARED TRANSCRIPT ROW (aligned side-by-side)
with gr.Row():
with gr.Column():
gr.Markdown("### Faster-Whisper Output")
out_w = gr.Textbox(label="Raw Transcript", visible=False)
out_w_d = gr.HTML(label="Diarized Transcript", elem_classes=["diar"])
with gr.Column():
gr.Markdown("### SenseVoice Output")
out_s = gr.Textbox(label="Raw Transcript", visible=False)
out_s_d = gr.HTML(label="Diarized Transcript", elem_classes=["diar"])
# ────────────────────────────────────────────────────────────────
# 3) WIRING UP TOGGLES & BUTTONS
# wire the callbacks into those shared boxes
btn_w.click(
fn=transcribe_fwhisper_stream,
inputs=[whisper_dd, whisper_lang, audio_input, device_radio, whisper_multilingual_en, whisper_punct_chk],
outputs=[out_w, out_w_d]
)
btn_s.click(
fn=transcribe_sense_steam,
inputs=[sense_dd, sense_lang, audio_input, sense_punct_chk, device_radio_s],
outputs=[out_s, out_s_d]
)
if __name__ == "__main__":
Demo.launch()
|