File size: 11,278 Bytes
d2346a3 90260b6 d2346a3 90260b6 d2346a3 90260b6 d2346a3 90260b6 d2346a3 90260b6 42b67cc ca2fcb8 42b67cc ca2fcb8 42b67cc ca2fcb8 42b67cc 1a39cb8 42b67cc ca2fcb8 42b67cc ca2fcb8 42b67cc ca2fcb8 42b67cc ca2fcb8 2ba9ac9 17dfa9a 2ba9ac9 17dfa9a 42b67cc ca2fcb8 42b67cc 11eef4d 42b67cc 96097b5 42b67cc 96097b5 42b67cc 96097b5 42b67cc 96097b5 42b67cc 96097b5 42b67cc 96097b5 bfc1179 d38e2b9 ca2fcb8 90260b6 42b67cc d2346a3 42b67cc d2346a3 90260b6 42b67cc d2346a3 90260b6 d2346a3 42b67cc 90260b6 d2346a3 90260b6 d2346a3 90260b6 d2346a3 90260b6 d2346a3 90260b6 d2346a3 90260b6 d2346a3 90260b6 d2346a3 90260b6 d2346a3 90260b6 d2346a3 90260b6 d2346a3 90260b6 d2346a3 11eef4d d2346a3 90260b6 d2346a3 90260b6 11eef4d d2346a3 11eef4d d2346a3 11eef4d d2346a3 11eef4d d2346a3 11eef4d d2346a3 11eef4d d2346a3 11eef4d d2346a3 11eef4d d2346a3 11eef4d d2346a3 11eef4d d2346a3 11eef4d d2346a3 90260b6 d2346a3 11eef4d d2346a3 11eef4d 90260b6 d2346a3 90260b6 d2346a3 90260b6 d2346a3 90260b6 d2346a3 7f552ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
# app.py
from flask import Flask, jsonify, request
from flask_cors import CORS
from transformers import pipeline
import logging
import torch
import os # Untuk mendapatkan environment variables, misalnya di Hugging Face Spaces
app = Flask(__name__)
CORS(app) # Mengaktifkan CORS untuk mengizinkan permintaan dari frontend Anda
# --- Setup Logging ---
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# --- Konfigurasi Model dan Informasi ---
# Tambahkan 'hf_model_name' jika nama model di Hugging Face berbeda dari ID yang Anda inginkan.
# Jika nama model di Hugging Face sama, tidak perlu 'hf_model_name'.
model_info = {
"Albert-Base-V2": {
"task": "fill-mask",
"description": "Lyon28 Albert-Base-V2"
},
"GPT-2": {
"task": "text-generation",
"description": "Lyon28 GPT-2"
},
"Tinny-Llama": {
"task": "text-generation",
"description": "Lyon 28 Tinny Llama"
},
"Electra-Small": {
"task": "fill-mask",
"description": "Lyon28 Small ELECTRA"
},
"GPT-2-Tinny": {
"task": "text-generation",
"description": "Lyon28 Tiny GPT-2"
},
"Bert-Tinny": {
"task": "fill-mask",
"description": "Lyon28 Tiny BERT"
},
"Distilbert-Base-Uncased": {
"task": "fill-mask",
"description": "Lyon28 Distilled BERT"
},
"Pythia": {
"task": "text-generation",
"description": "Lyon28 Pythia"
},
"T5-Small": {
"task": "text2text-generation",
"description": "Lyon28 Small T5"
},
"GPT-Neo": {
"task": "text-generation",
"description": "Lyon28 GPT-Neo"
},
"Distil-GPT-2": {
"task": "text-generation",
"description": "Lyon28 Distilled GPT-2"
},
"training-models": {
"task": "text-generation",
"description": "Lyon28 training-models"
},
# --- MODEL EXTERNAL ---
"TinyLLama-NSFW-Chatbot": {
"task": "text-generation",
"description": "BilalRahib's TinyLLama NSFW Chatbot",
"hf_model_name": "bilalRahib/TinyLLama-NSFW-Chatbot"
},
"whisper-large-v3": {
"task": "automatic-speech-recognition",
"description": "openai whisper-large-v3",
"hf_model_name": "openai/whisper-large-v3"
},
"Nusantara-4b-Indo-Chat": {
"task": "text-generation",
"description": "kalisai Nusantara-4b-Indo-Chat",
"hf_model_name": "kalisai/Nusantara-4b-Indo-Chat"
},
"lb-reranker-0.5B-v1.0": {
"task": "text-generation",
"description": "lightblue lb-reranker-0.5B-v1.0",
"hf_model_name": "lightblue/lb-reranker-0.5B-v1.0"
},
"harry-potter-gpt2": {
"task": "text-generation",
"description": "akahana harry-potter-gpt2",
"hf_model_name": "akahana/harry-potter-gpt2"
},
"Sailor2-1B-Chat": {
"task": "text-generation",
"description": "sail Sailor2-1B-Chat",
"hf_model_name": "sail/Sailor2-1B-Chat"
},
"gpt2-indo-textgen": {
"task": "text-generation",
"description": "anugrahap gpt2-indo-textgen",
"hf_model_name": "anugrahap/gpt2-indo-textgen"
},
"cendol-mt5-small-inst": {
"task": "text-generation",
"description": "indonlp cendol-mt5-small-inst",
"hf_model_name": "indonlp/cendol-mt5-small-inst"
},
"Sailor2-1B-Pre": {
"task": "text-generation",
"description": "sail Sailor2-1B-Pre",
"hf_model_name": "sail/Sailor2-1B-Pre"
},
"gemini-small": {
"task": "text-generation",
"description": "describeai gemini-small",
"hf_model_name": "describeai/gemini-small"
}
}
# --- Lazy Loading ---
models = {}
# --- Utility Lazy Loading ---
def get_model_pipeline(model_name):
"""
Memuat model hanya jika belum dimuat (lazy loading).
Mengembalikan pipeline model yang diminta.
"""
if model_name not in models:
logger.info(f"Model '{model_name}' belum dimuat. Memuat sekarang...")
if model_name not in model_info:
logger.error(f"Informasi model '{model_name}' tidak ditemukan di model_info.")
raise ValueError(f"Model '{model_name}' tidak dikenal.")
info = model_info[model_name]
try:
hf_model_path = info.get("hf_model_name", f"Lyon28/{model_name}")
models[model_name] = pipeline(
info["task"],
model=hf_model_path,
device="cpu",
torch_dtype=torch.float32
)
logger.info(f"β
Model '{model_name}' (Path: {hf_model_path}) berhasil dimuat.")
except Exception as e:
logger.error(f"β Gagal memuat model '{model_name}' (Path: {hf_model_path}): {str(e)}", exc_info=True)
raise RuntimeError(f"Gagal memuat model: {model_name}. Detail: {str(e)}") from e
return models[model_name]
# --- Rute API ---
@app.route('/')
def home():
"""Endpoint root untuk status API."""
return jsonify({
"message": "Flask API untuk Model Hugging Face",
"status": "online",
"loaded_models_count": len(models),
"available_model_configs": list(model_info.keys()),
"info": "Gunakan /api/models untuk daftar model yang tersedia."
})
@app.route('/api/models', methods=['GET'])
def list_available_models():
"""Mengembalikan daftar semua model yang dikonfigurasi, termasuk status muatan."""
available_models_data = [
{
"id": name,
"name": info["description"],
"task": info["task"],
"status": "loaded" if name in models else "not_loaded", # Menunjukkan apakah sudah dimuat via lazy loading
"endpoint": f"/api/{name}"
}
for name, info in model_info.items()
]
return jsonify({
"total_configured_models": len(model_info),
"currently_loaded_models": len(models),
"models": available_models_data
})
@app.route('/api/<model_id>', methods=['POST'])
def predict_with_model(model_id):
"""
Endpoint utama untuk prediksi model.
Menerima 'inputs' (teks pra-diformat) dan 'parameters' (dictionary) opsional.
"""
logger.info(f"Menerima permintaan untuk model: {model_id}")
if model_id not in model_info:
logger.warning(f"Permintaan untuk model tidak dikenal: {model_id}")
return jsonify({"error": f"Model '{model_id}' tidak dikenal. Lihat /api/models untuk daftar yang tersedia."}), 404
try:
model_pipeline = get_model_pipeline(model_id) # Memuat model jika belum ada
model_task = model_info[model_id]["task"]
data = request.json
# Input sekarang diharapkan sebagai fullPromptString dari frontend
full_prompt_string_from_frontend = data.get('inputs', '')
parameters = data.get('parameters', {})
if not full_prompt_string_from_frontend:
return jsonify({"error": "Input 'inputs' (full prompt string) tidak boleh kosong."}), 400
logger.info(f"Inferensi: Model='{model_id}', Task='{model_task}', Full Prompt='{full_prompt_string_from_frontend[:200]}...', Params='{parameters}'")
result = []
# --- Penanganan Parameter dan Inferensi berdasarkan Tipe Tugas ---
if model_task == "text-generation":
gen_params = {
"max_new_tokens": parameters.get("max_new_tokens", 150),
"temperature": parameters.get("temperature", 0.7),
"do_sample": parameters.get("do_sample", True),
"return_full_text": parameters.get("return_full_text", False), # Sangat penting untuk chatbot
"num_return_sequences": parameters.get("num_return_sequences", 1),
"top_k": parameters.get("top_k", 50),
"top_p": parameters.get("top_p", 0.95),
"repetition_penalty": parameters.get("repetition_penalty", 1.2),
}
# Langsung berikan full_prompt_string_from_frontend ke pipeline
result = model_pipeline(full_prompt_string_from_frontend, **gen_params)
elif model_task == "fill-mask":
mask_params = {
"top_k": parameters.get("top_k", 5)
}
# Untuk fill-mask, input harus string biasa, bukan prompt yang kompleks
# Anda perlu memastikan frontend tidak mengirim prompt kompleks ke fill-mask model
result = model_pipeline(full_prompt_string_from_frontend, **mask_params)
elif model_task == "text2text-generation":
t2t_params = {
"max_new_tokens": parameters.get("max_new_tokens", 150),
"temperature": parameters.get("temperature", 0.7),
"do_sample": parameters.get("do_sample", True),
}
result = model_pipeline(full_prompt_string_from_frontend, **t2t_params)
else:
result = model_pipeline(full_prompt_string_from_frontend, **parameters)
# --- Konsistensi Format Output (tidak berubah dari update sebelumnya) ---
response_output = {}
if model_task == "text-generation" or model_task == "text2text-generation":
if result and len(result) > 0 and 'generated_text' in result[0]:
response_output['text'] = result[0]['generated_text'].strip()
else:
response_output['text'] = "[Tidak ada teks yang dihasilkan atau format tidak sesuai.]"
elif model_task == "fill-mask":
response_output['predictions'] = [
{"sequence": p.get('sequence', ''), "score": p.get('score', 0.0), "token_str": p.get('token_str', '')}
for p in result
]
else:
response_output = result
logger.info(f"Inferensi berhasil untuk '{model_id}'. Output singkat: '{str(response_output)[:200]}'")
return jsonify({"model": model_id, "inputs": full_prompt_string_from_frontend, "outputs": response_output})
except ValueError as ve:
logger.error(f"Validasi atau konfigurasi error untuk model '{model_id}': {str(ve)}")
return jsonify({"error": str(ve), "message": "Kesalahan konfigurasi atau input model."}), 400
except RuntimeError as re:
logger.error(f"Error runtime saat memuat model '{model_id}': {str(re)}")
return jsonify({"error": str(re), "message": "Model gagal dimuat."}), 503
except Exception as e:
logger.error(f"Terjadi kesalahan tak terduga saat memprediksi dengan model '{model_id}': {str(e)}", exc_info=True)
return jsonify({"error": str(e), "message": "Terjadi kesalahan internal server."}), 500
@app.route('/health', methods=['GET'])
def health_check():
"""Endpoint untuk health check."""
return jsonify({"status": "healthy", "loaded_models_count": len(models), "message": "API berfungsi normal."})
# --- Jalankan Aplikasi ---
if __name__ == '__main__':
# Untuk Hugging Face Spaces, port biasanya 7860
# Menggunakan HOST dari environment variable jika tersedia, default ke 0.0.0.0
# Debug=False untuk produksi
app.run(host=os.getenv('HOST', '0.0.0.0'), port=int(os.getenv('PORT', 7860)), debug=False) |