Spaces:
Sleeping
Sleeping
Deploy docker Streamlit app
Browse files- Dockerfile +11 -0
- README.md +6 -5
- app.py +78 -0
- requirements.txt +5 -0
- streamlit_app.py +91 -0
Dockerfile
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.10-slim
|
2 |
+
ENV PYTHONUNBUFFERED=1
|
3 |
+
# HF Spaces sets PORT; default to 7860 for local dev
|
4 |
+
ENV PORT=7860
|
5 |
+
WORKDIR /app
|
6 |
+
COPY requirements.txt /app/requirements.txt
|
7 |
+
RUN apt-get update && apt-get install -y --no-install-recommends build-essential && rm -rf /var/lib/apt/lists/* && pip install --no-cache-dir -r /app/requirements.txt
|
8 |
+
COPY app.py /app/app.py
|
9 |
+
EXPOSE 7860
|
10 |
+
# Use shell form so $PORT expands
|
11 |
+
CMD streamlit run app.py --server.port $PORT --server.address 0.0.0.0
|
README.md
CHANGED
@@ -1,10 +1,11 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: docker
|
|
|
7 |
pinned: false
|
8 |
---
|
9 |
|
10 |
-
|
|
|
1 |
---
|
2 |
+
title: Tourism Prediction App
|
3 |
+
emoji: ποΈ
|
4 |
+
colorFrom: yellow
|
5 |
+
colorTo: green
|
6 |
sdk: docker
|
7 |
+
app_port: 7860
|
8 |
pinned: false
|
9 |
---
|
10 |
|
11 |
+
<!-- redeploy 1756565971 -->
|
app.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os, json, joblib
|
2 |
+
import pandas as pd
|
3 |
+
import streamlit as st
|
4 |
+
from huggingface_hub import hf_hub_download
|
5 |
+
|
6 |
+
st.set_page_config(page_title="Wellness Package Predictor", page_icon="ποΈ", layout="centered")
|
7 |
+
st.title("ποΈ Wellness Tourism Package β Purchase Propensity")
|
8 |
+
|
9 |
+
def get_secret(name: str, default=None):
|
10 |
+
try:
|
11 |
+
return st.secrets[name]
|
12 |
+
except Exception:
|
13 |
+
return os.getenv(name, default)
|
14 |
+
|
15 |
+
MODEL_REPO = get_secret("MODEL_REPO", "MBG0903/tourism_customer_xgb")
|
16 |
+
HF_TOKEN = get_secret("HF_TOKEN", None)
|
17 |
+
|
18 |
+
@st.cache_resource(show_spinner=True)
|
19 |
+
def load_artifacts(repo_id: str, token: str | None):
|
20 |
+
model_path = hf_hub_download(repo_id=repo_id, filename="model.joblib", token=token)
|
21 |
+
meta_path = hf_hub_download(repo_id=repo_id, filename="metadata.json", token=token)
|
22 |
+
model = joblib.load(model_path)
|
23 |
+
with open(meta_path, "r") as f:
|
24 |
+
meta = json.load(f)
|
25 |
+
return model, meta
|
26 |
+
|
27 |
+
try:
|
28 |
+
model, meta = load_artifacts(MODEL_REPO, HF_TOKEN)
|
29 |
+
except Exception as e:
|
30 |
+
st.error(f"Failed to load model artifacts from {MODEL_REPO}. Details: {e}")
|
31 |
+
st.stop()
|
32 |
+
|
33 |
+
st.caption("Model metrics (from training)")
|
34 |
+
st.json(meta.get("metrics", {}))
|
35 |
+
|
36 |
+
st.sidebar.header("Enter Customer Profile")
|
37 |
+
def i_num(label, value, minv=None, maxv=None, step=1):
|
38 |
+
return st.sidebar.number_input(label, value=value, min_value=minv, max_value=maxv, step=step)
|
39 |
+
|
40 |
+
inputs = {}
|
41 |
+
inputs["CustomerID"] = st.sidebar.text_input("CustomerID", "CUST_000001")
|
42 |
+
inputs["Age"] = i_num("Age", 32, 18, 90)
|
43 |
+
inputs["TypeofContact"] = st.sidebar.selectbox("TypeofContact", ["Company Invited","Self Inquiry"])
|
44 |
+
inputs["CityTier"] = st.sidebar.selectbox("CityTier", ["Tier 1","Tier 2","Tier 3"])
|
45 |
+
inputs["Occupation"] = st.sidebar.selectbox("Occupation", ["Salaried","Freelancer","Self Employed","Student","Retired"])
|
46 |
+
inputs["Gender"] = st.sidebar.selectbox("Gender", ["Male","Female"])
|
47 |
+
inputs["NumberOfPersonVisiting"] = i_num("NumberOfPersonVisiting", 2, 1, 10)
|
48 |
+
inputs["PreferredPropertyStar"] = i_num("PreferredPropertyStar", 4, 1, 5)
|
49 |
+
inputs["MaritalStatus"] = st.sidebar.selectbox("MaritalStatus", ["Single","Married","Divorced"])
|
50 |
+
inputs["NumberOfTrips"] = i_num("NumberOfTrips", 3, 0, 50)
|
51 |
+
inputs["Passport"] = st.sidebar.selectbox("Passport", [0,1])
|
52 |
+
inputs["OwnCar"] = st.sidebar.selectbox("OwnCar", [0,1])
|
53 |
+
inputs["NumberOfChildrenVisiting"] = i_num("NumberOfChildrenVisiting", 0, 0, 10)
|
54 |
+
inputs["Designation"] = st.sidebar.selectbox("Designation", ["Executive","Manager","Senior Manager","AVP","VP","Director"])
|
55 |
+
inputs["MonthlyIncome"] = i_num("MonthlyIncome", 70000, 0, 1_000_000, 1000)
|
56 |
+
inputs["PitchSatisfactionScore"] = i_num("PitchSatisfactionScore", 4, 1, 5)
|
57 |
+
inputs["ProductPitched"] = st.sidebar.selectbox("ProductPitched", ["Basic","Deluxe","Super Deluxe","King","Queen"])
|
58 |
+
inputs["NumberOfFollowups"] = i_num("NumberOfFollowups", 2, 0, 20)
|
59 |
+
inputs["DurationOfPitch"] = i_num("DurationOfPitch", 15, 0, 120)
|
60 |
+
|
61 |
+
df_in = pd.DataFrame([inputs])
|
62 |
+
for junk in ["Unnamed: 0", "index"]:
|
63 |
+
if junk in df_in.columns: df_in = df_in.drop(columns=[junk])
|
64 |
+
|
65 |
+
feature_order = meta.get("feature_order")
|
66 |
+
if feature_order: df_in = df_in[[c for c in feature_order if c in df_in.columns]]
|
67 |
+
|
68 |
+
threshold = float(meta.get("threshold", 0.5))
|
69 |
+
|
70 |
+
if st.button("Predict"):
|
71 |
+
try:
|
72 |
+
proba = float(model.predict_proba(df_in)[:, 1][0])
|
73 |
+
pred = int(proba >= threshold)
|
74 |
+
st.metric("Purchase Probability", f"{proba:.3f}")
|
75 |
+
st.write("Prediction:", "Will Purchase (1)" if pred else "Will Not Purchase (0)")
|
76 |
+
with st.expander("Input snapshot"): st.dataframe(df_in)
|
77 |
+
except Exception as e:
|
78 |
+
st.error(f"Prediction failed: {e}")
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit>=1.33
|
2 |
+
pandas
|
3 |
+
scikit-learn
|
4 |
+
joblib
|
5 |
+
huggingface_hub>=0.23
|
streamlit_app.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os, json, joblib
|
2 |
+
import pandas as pd
|
3 |
+
import streamlit as st
|
4 |
+
from huggingface_hub import hf_hub_download
|
5 |
+
|
6 |
+
st.set_page_config(page_title="Wellness Package Predictor", page_icon="ποΈ", layout="centered")
|
7 |
+
st.title("ποΈ Wellness Tourism Package β Purchase Propensity")
|
8 |
+
|
9 |
+
def get_secret(name: str, default=None):
|
10 |
+
try:
|
11 |
+
return st.secrets[name]
|
12 |
+
except Exception:
|
13 |
+
return os.getenv(name, default)
|
14 |
+
|
15 |
+
# ---- Model location & token ----
|
16 |
+
MODEL_REPO = get_secret("MODEL_REPO", "MBG0903/tourism_customer_xgb")
|
17 |
+
HF_TOKEN = get_secret("HF_TOKEN", None) # only needed if the model repo is private
|
18 |
+
|
19 |
+
@st.cache_resource(show_spinner=True)
|
20 |
+
def load_artifacts(repo_id: str, token: str | None):
|
21 |
+
model_path = hf_hub_download(repo_id=repo_id, filename="model.joblib", token=token)
|
22 |
+
meta_path = hf_hub_download(repo_id=repo_id, filename="metadata.json", token=token)
|
23 |
+
model = joblib.load(model_path)
|
24 |
+
with open(meta_path, "r") as f:
|
25 |
+
meta = json.load(f)
|
26 |
+
return model, meta
|
27 |
+
|
28 |
+
try:
|
29 |
+
model, meta = load_artifacts(MODEL_REPO, HF_TOKEN)
|
30 |
+
except Exception as e:
|
31 |
+
st.error(f"Failed to load model artifacts from {MODEL_REPO}. Details: {e}")
|
32 |
+
st.stop()
|
33 |
+
|
34 |
+
st.caption("Model metrics (from training)")
|
35 |
+
st.json(meta.get("metrics", {}))
|
36 |
+
|
37 |
+
# ---- Inputs ----
|
38 |
+
st.sidebar.header("Enter Customer Profile")
|
39 |
+
|
40 |
+
def i_num(label, value, minv=None, maxv=None, step=1):
|
41 |
+
return st.sidebar.number_input(label, value=value, min_value=minv, max_value=maxv, step=step)
|
42 |
+
|
43 |
+
inputs = {}
|
44 |
+
inputs["CustomerID"] = st.sidebar.text_input("CustomerID", "CUST_000001")
|
45 |
+
inputs["Age"] = i_num("Age", 32, 18, 90)
|
46 |
+
inputs["TypeofContact"] = st.sidebar.selectbox("TypeofContact", ["Company Invited","Self Inquiry"])
|
47 |
+
inputs["CityTier"] = st.sidebar.selectbox("CityTier", ["Tier 1","Tier 2","Tier 3"])
|
48 |
+
inputs["Occupation"] = st.sidebar.selectbox("Occupation", ["Salaried","Freelancer","Self Employed","Student","Retired"])
|
49 |
+
inputs["Gender"] = st.sidebar.selectbox("Gender", ["Male","Female"])
|
50 |
+
inputs["NumberOfPersonVisiting"] = i_num("NumberOfPersonVisiting", 2, 1, 10)
|
51 |
+
inputs["PreferredPropertyStar"] = i_num("PreferredPropertyStar", 4, 1, 5)
|
52 |
+
inputs["MaritalStatus"] = st.sidebar.selectbox("MaritalStatus", ["Single","Married","Divorced"])
|
53 |
+
inputs["NumberOfTrips"] = i_num("NumberOfTrips", 3, 0, 50)
|
54 |
+
inputs["Passport"] = st.sidebar.selectbox("Passport", [0,1])
|
55 |
+
inputs["OwnCar"] = st.sidebar.selectbox("OwnCar", [0,1])
|
56 |
+
inputs["NumberOfChildrenVisiting"] = i_num("NumberOfChildrenVisiting", 0, 0, 10)
|
57 |
+
inputs["Designation"] = st.sidebar.selectbox("Designation", ["Executive","Manager","Senior Manager","AVP","VP","Director"])
|
58 |
+
inputs["MonthlyIncome"] = i_num("MonthlyIncome", 70000, 0, 1_000_000, 1000)
|
59 |
+
inputs["PitchSatisfactionScore"] = i_num("PitchSatisfactionScore", 4, 1, 5)
|
60 |
+
inputs["ProductPitched"] = st.sidebar.selectbox("ProductPitched", ["Basic","Deluxe","Super Deluxe","King","Queen"])
|
61 |
+
inputs["NumberOfFollowups"] = i_num("NumberOfFollowups", 2, 0, 20)
|
62 |
+
inputs["DurationOfPitch"] = i_num("DurationOfPitch", 15, 0, 120)
|
63 |
+
|
64 |
+
df_in = pd.DataFrame([inputs])
|
65 |
+
|
66 |
+
# Defensive cleanup (if any junk cols appear)
|
67 |
+
for junk in ["Unnamed: 0", "index"]:
|
68 |
+
if junk in df_in.columns:
|
69 |
+
df_in = df_in.drop(columns=[junk])
|
70 |
+
|
71 |
+
# Respect training feature order if provided
|
72 |
+
feature_order = meta.get("feature_order")
|
73 |
+
if feature_order:
|
74 |
+
missing = [c for c in feature_order if c not in df_in.columns]
|
75 |
+
if missing:
|
76 |
+
st.warning(f"Input missing expected columns: {missing}")
|
77 |
+
df_in = df_in[[c for c in feature_order if c in df_in.columns]]
|
78 |
+
|
79 |
+
threshold = float(meta.get("threshold", 0.5))
|
80 |
+
|
81 |
+
if st.button("Predict"):
|
82 |
+
try:
|
83 |
+
proba = float(model.predict_proba(df_in)[:, 1][0])
|
84 |
+
pred = int(proba >= threshold)
|
85 |
+
st.metric("Purchase Probability", f"{proba:.3f}")
|
86 |
+
st.write("Prediction:", "Will Purchase (1)" if pred == 1 else "Will Not Purchase (0)")
|
87 |
+
with st.expander("Input snapshot"):
|
88 |
+
st.dataframe(df_in)
|
89 |
+
except Exception as e:
|
90 |
+
st.error(f"Prediction failed: {e}")
|
91 |
+
|