Spaces:
Build error
Build error
| # -------------------------------------------------------- | |
| # Copyright (c) 2022 Microsoft | |
| # Licensed under The MIT License [see LICENSE for details] | |
| # Based on fairseq code bases | |
| # https://github.com/facebookresearch/fairseq | |
| # -------------------------------------------------------- | |
| """ | |
| wav2vec encoder adding relitive position bias, modified from | |
| https://github.com/microsoft/SpeechT5/blob/main/Speech2C/speech2c/models/modules/transformer_encoder.py | |
| https://github.com/facebookresearch/fairseq/blob/main/fairseq/models/wav2vec/wav2vec2.py | |
| """ | |
| import math | |
| import numpy as np | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from fairseq import utils | |
| from fairseq.dataclass import ChoiceEnum | |
| from fairseq.modules import ( | |
| LayerNorm, | |
| SamePad, | |
| ) | |
| from fairseq.modules.checkpoint_activations import checkpoint_wrapper | |
| from fairseq.modules.transformer_sentence_encoder import init_bert_params | |
| from fairseq.utils import index_put | |
| from fairseq.distributed import fsdp_wrap | |
| from fairseq.models.wav2vec.utils import pad_to_multiple | |
| ## reload multi-head attition with rel-pos-bias | |
| from fairseq.models.wav2vec.wav2vec2 import TransformerEncoder as W2vTransformerEncoder | |
| from speechut.modules import RelativePositionalEncoding | |
| from speechut.modules import MultiheadAttention | |
| EXTRACTOR_MODE_CHOICES = ChoiceEnum(["default", "layer_norm"]) | |
| MASKING_DISTRIBUTION_CHOICES = ChoiceEnum(["static", "uniform", "normal", "poisson"]) | |
| class TransformerEncoder(W2vTransformerEncoder): | |
| def __init__(self, args): | |
| super().__init__(args) | |
| self.dropout = args.dropout | |
| self.embedding_dim = args.encoder_embed_dim | |
| self.required_seq_len_multiple = args.required_seq_len_multiple | |
| self.use_rel_pos_enc = getattr(args, "use_rel_pos_enc", False) | |
| self.pos_conv = nn.Conv1d( | |
| self.embedding_dim, | |
| self.embedding_dim, | |
| kernel_size=args.conv_pos, | |
| padding=args.conv_pos // 2, | |
| groups=args.conv_pos_groups, | |
| ) | |
| dropout = 0 | |
| std = math.sqrt((4 * (1.0 - dropout)) / (args.conv_pos * self.embedding_dim)) | |
| nn.init.normal_(self.pos_conv.weight, mean=0, std=std) | |
| nn.init.constant_(self.pos_conv.bias, 0) | |
| self.pos_conv = nn.utils.weight_norm(self.pos_conv, name="weight", dim=2) | |
| self.pos_conv = nn.Sequential(self.pos_conv, SamePad(args.conv_pos), nn.GELU()) | |
| layers = [] | |
| for _ in range(args.encoder_layers): | |
| layer = TransformerSentenceEncoderLayer( | |
| embedding_dim=self.embedding_dim, | |
| ffn_embedding_dim=args.encoder_ffn_embed_dim, | |
| num_attention_heads=args.encoder_attention_heads, | |
| dropout=self.dropout, | |
| attention_dropout=args.attention_dropout, | |
| activation_dropout=args.activation_dropout, | |
| activation_fn=args.activation_fn, | |
| layer_norm_first=args.layer_norm_first, | |
| has_relative_attention_bias=self.use_rel_pos_enc, | |
| ) | |
| if args.checkpoint_activations: | |
| layer = fsdp_wrap(layer) | |
| layer = checkpoint_wrapper(layer) | |
| layers.append(layer) | |
| self.layers = nn.ModuleList(layers) | |
| self.layer_norm_first = args.layer_norm_first | |
| self.layer_norm = LayerNorm(self.embedding_dim) | |
| self.layerdrop = args.encoder_layerdrop | |
| if self.use_rel_pos_enc: | |
| self.pos_emb = RelativePositionalEncoding(args.encoder_embed_dim // args.encoder_attention_heads, 160) | |
| self.apply(init_bert_params) | |
| def forward(self, x, padding_mask=None, layer=None): | |
| x, layer_results = self.extract_features(x, padding_mask, layer) | |
| if self.layer_norm_first and layer is None: | |
| x = self.layer_norm(x) | |
| return x, layer_results | |
| def extract_features(self, x, padding_mask=None, tgt_layer=None): | |
| if padding_mask is not None: | |
| x = index_put(x, padding_mask, 0) | |
| x_conv = self.pos_conv(x.transpose(1, 2)) | |
| x_conv = x_conv.transpose(1, 2) | |
| x = x + x_conv | |
| if not self.layer_norm_first: | |
| x = self.layer_norm(x) | |
| # pad to the sequence length dimension | |
| x, pad_length = pad_to_multiple( | |
| x, self.required_seq_len_multiple, dim=-2, value=0 | |
| ) | |
| if pad_length > 0 and padding_mask is None: | |
| padding_mask = x.new_zeros((x.size(0), x.size(1)), dtype=torch.bool) | |
| padding_mask[:, -pad_length:] = True | |
| else: | |
| padding_mask, _ = pad_to_multiple( | |
| padding_mask, self.required_seq_len_multiple, dim=-1, value=True | |
| ) | |
| x = F.dropout(x, p=self.dropout, training=self.training) | |
| # B x T x C -> T x B x C | |
| x = x.transpose(0, 1) | |
| if self.use_rel_pos_enc: | |
| x_len = x.shape[0] | |
| pos_seq = torch.arange(0, x_len).long().to(x.device) | |
| pos_seq = pos_seq[:, None] - pos_seq[None, :] | |
| pos_k, pos_v = self.pos_emb(pos_seq) | |
| else: | |
| pos_k = None | |
| layer_results = [] | |
| r = None | |
| for i, layer in enumerate(self.layers): | |
| dropout_probability = np.random.random() | |
| if not self.training or (dropout_probability > self.layerdrop): | |
| x, z = layer(x, self_attn_padding_mask=padding_mask, need_weights=False, pos_bias=pos_k) | |
| if tgt_layer is not None: | |
| # unpad if needed | |
| if pad_length > 0: | |
| layer_results.append( | |
| ( | |
| x[:-pad_length], | |
| z[:, :-pad_length, :-pad_length] | |
| if z is not None | |
| else z, | |
| ) | |
| ) | |
| else: | |
| layer_results.append((x, z)) | |
| if i == tgt_layer: | |
| r = x | |
| break | |
| if r is not None: | |
| x = r | |
| # T x B x C -> B x T x C | |
| x = x.transpose(0, 1) | |
| # undo paddding | |
| if pad_length > 0: | |
| x = x[:, :-pad_length] | |
| return x, layer_results | |
| class TransformerSentenceEncoderLayer(nn.Module): | |
| """ | |
| Implements a Transformer Encoder Layer used in BERT/XLM style pre-trained | |
| models. | |
| """ | |
| def __init__( | |
| self, | |
| embedding_dim: float = 768, | |
| ffn_embedding_dim: float = 3072, | |
| num_attention_heads: float = 8, | |
| dropout: float = 0.1, | |
| attention_dropout: float = 0.1, | |
| activation_dropout: float = 0.1, | |
| activation_fn: str = "relu", | |
| layer_norm_first: bool = False, | |
| has_relative_attention_bias: bool = False, | |
| ) -> None: | |
| super().__init__() | |
| # Initialize parameters | |
| self.embedding_dim = embedding_dim | |
| self.dropout = dropout | |
| self.activation_dropout = activation_dropout | |
| # Initialize blocks | |
| self.activation_fn = utils.get_activation_fn(activation_fn) | |
| self.self_attn = MultiheadAttention( | |
| self.embedding_dim, | |
| num_attention_heads, | |
| dropout=attention_dropout, | |
| self_attention=True, | |
| ) | |
| self.dropout1 = nn.Dropout(dropout) | |
| self.dropout2 = nn.Dropout(self.activation_dropout) | |
| self.dropout3 = nn.Dropout(dropout) | |
| self.layer_norm_first = layer_norm_first | |
| # layer norm associated with the self attention layer | |
| self.self_attn_layer_norm = LayerNorm(self.embedding_dim) | |
| self.fc1 = nn.Linear(self.embedding_dim, ffn_embedding_dim) | |
| self.fc2 = nn.Linear(ffn_embedding_dim, self.embedding_dim) | |
| # layer norm associated with the position wise feed-forward NN | |
| self.final_layer_norm = LayerNorm(self.embedding_dim) | |
| if has_relative_attention_bias: | |
| self.norm_k = LayerNorm(self.embedding_dim//num_attention_heads) | |
| def forward( | |
| self, | |
| x: torch.Tensor, | |
| self_attn_mask: torch.Tensor = None, | |
| self_attn_padding_mask: torch.Tensor = None, | |
| need_weights: bool = False, | |
| att_args=None, | |
| pos_bias=None, | |
| ): | |
| """ | |
| LayerNorm is applied either before or after the self-attention/ffn | |
| modules similar to the original Transformer imlementation. | |
| """ | |
| residual = x | |
| if self.layer_norm_first: | |
| x = self.self_attn_layer_norm(x) | |
| if pos_bias is not None: | |
| pos_bias = self.norm_k(pos_bias) | |
| x, attn = self.self_attn( | |
| query=x, | |
| key=x, | |
| value=x, | |
| key_padding_mask=self_attn_padding_mask, | |
| attn_mask=self_attn_mask, | |
| position_bias=pos_bias, | |
| ) | |
| x = self.dropout1(x) | |
| x = residual + x | |
| residual = x | |
| x = self.final_layer_norm(x) | |
| x = self.activation_fn(self.fc1(x)) | |
| x = self.dropout2(x) | |
| x = self.fc2(x) | |
| x = self.dropout3(x) | |
| x = residual + x | |
| else: | |
| x, attn = self.self_attn( | |
| query=x, | |
| key=x, | |
| value=x, | |
| key_padding_mask=self_attn_padding_mask, | |
| position_bias=pos_bias, | |
| ) | |
| x = self.dropout1(x) | |
| x = residual + x | |
| x = self.self_attn_layer_norm(x) | |
| residual = x | |
| x = self.activation_fn(self.fc1(x)) | |
| x = self.dropout2(x) | |
| x = self.fc2(x) | |
| x = self.dropout3(x) | |
| x = residual + x | |
| x = self.final_layer_norm(x) | |
| return x, attn | |