MJobe commited on
Commit
246ff82
·
verified ·
1 Parent(s): fd52e30

Update main.py

Browse files
Files changed (1) hide show
  1. main.py +0 -40
main.py CHANGED
@@ -34,14 +34,6 @@ app.add_middleware(
34
  allow_headers=["*"],
35
  )
36
 
37
- nlp_qa = pipeline("document-question-answering", model="jinhybr/OCR-DocVQA-Donut")
38
- nlp_qa_v2 = pipeline("document-question-answering", model="faisalraza/layoutlm-invoices", ignore_mismatched_sizes=True)
39
- nlp_qa_v3 = pipeline("question-answering", model="deepset/roberta-base-squad2")
40
- nlp_classification = pipeline("text-classification", model="distilbert/distilbert-base-uncased-finetuned-sst-2-english")
41
- nlp_classification_v2 = pipeline("text-classification", model="cardiffnlp/twitter-roberta-base-sentiment-latest")
42
- nlp_speech_to_text = pipeline("automatic-speech-recognition", model="facebook/wav2vec2-base-960h")
43
- nlp_sequence_classification = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
44
- nlp_main_classification = pipeline("zero-shot-classification", model="roberta-large-mnli")
45
  code_generation_model = pipeline('text-generation', model='codeparrot/codeparrot-small')
46
 
47
  description = """
@@ -55,38 +47,6 @@ This API performs document question answering using a LayoutLMv2-based model.
55
 
56
  app = FastAPI(docs_url="/", description=description)
57
 
58
- @app.post("/uploadfile/", description="Upload an image file to extract text and answer provided questions.")
59
- async def perform_document_qa(
60
- file: UploadFile = File(...),
61
- questions: str = Form(...),
62
- ):
63
- try:
64
- # Read the uploaded file as bytes
65
- contents = await file.read()
66
-
67
- # Open the image using PIL
68
- image = Image.open(BytesIO(contents))
69
-
70
- # Perform document question answering for each question using LayoutLMv2-based model
71
- answers_dict = {}
72
- for question in questions.split(','):
73
- result = nlp_qa(
74
- image,
75
- question.strip()
76
- )
77
-
78
- # Access the 'answer' key from the first item in the result list
79
- answer = result[0]['answer']
80
-
81
- # Format the question as a string without extra characters
82
- formatted_question = question.strip("[]")
83
-
84
- answers_dict[formatted_question] = answer
85
-
86
- return answers_dict
87
- except Exception as e:
88
- return JSONResponse(content=f"Error processing file: {str(e)}", status_code=500)
89
-
90
  @app.post("/generate_code/", description="Generate code based on the provided prompt.")
91
  async def generate_code(prompt: str = Form(...)):
92
  try:
 
34
  allow_headers=["*"],
35
  )
36
 
 
 
 
 
 
 
 
 
37
  code_generation_model = pipeline('text-generation', model='codeparrot/codeparrot-small')
38
 
39
  description = """
 
47
 
48
  app = FastAPI(docs_url="/", description=description)
49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50
  @app.post("/generate_code/", description="Generate code based on the provided prompt.")
51
  async def generate_code(prompt: str = Form(...)):
52
  try: