Spaces:
Sleeping
Sleeping
Update inference_app.py
Browse files- inference_app.py +9 -11
inference_app.py
CHANGED
@@ -18,7 +18,7 @@ import gradio as gr
|
|
18 |
|
19 |
from gradio_molecule3d import Molecule3D
|
20 |
|
21 |
-
def protonate_receptor_and_ligand(protein
|
22 |
protein_out = protein.replace(".pdb","_H.pdb")
|
23 |
with open(protein_out, "w") as f:
|
24 |
subprocess.run(
|
@@ -26,20 +26,18 @@ def protonate_receptor_and_ligand(protein,ligand):
|
|
26 |
stdout=f,
|
27 |
stderr=subprocess.DEVNULL,
|
28 |
)
|
29 |
-
ligand_out = ligand.replace(".pdb","_H.pdb")
|
30 |
-
subprocess.run(["obabel", ligand, "-O", ligand_out, "-p", "7.4"])
|
31 |
|
32 |
|
33 |
def generate_conformers(ligand, num_confs=8):
|
34 |
-
mol = Chem.
|
35 |
-
ligand
|
36 |
)
|
37 |
mol.RemoveAllConformers()
|
38 |
mol = Chem.AddHs(mol)
|
39 |
AllChem.EmbedMultipleConfs(mol, numConfs=num_confs, randomSeed=1)
|
40 |
AllChem.UFFOptimizeMoleculeConfs(mol)
|
41 |
with Chem.SDWriter(
|
42 |
-
ligand.
|
43 |
) as writer:
|
44 |
for cid in range(mol.GetNumConformers()):
|
45 |
writer.write(mol, confId=cid)
|
@@ -84,9 +82,9 @@ def run_docking(protein, ligand):
|
|
84 |
"-r",
|
85 |
protein.replace(".pdb","_H.pdb"),
|
86 |
"-l",
|
87 |
-
ligand.
|
88 |
"-o",
|
89 |
-
|
90 |
"--center_x", # bounding box matching PoseBusters methodology
|
91 |
str(0),
|
92 |
"--center_y",
|
@@ -111,13 +109,13 @@ def run_docking(protein, ligand):
|
|
111 |
)
|
112 |
# sort the poses from the multiple conformation runs, so overall best is first
|
113 |
poses = PandasTools.LoadSDF(
|
114 |
-
|
115 |
)
|
116 |
poses["CNNscore"] = poses["CNNscore"].astype(float)
|
117 |
gnina_order = poses.sort_values("CNNscore", ascending=False).reset_index(drop=True)
|
118 |
PandasTools.WriteSDF(
|
119 |
gnina_order,
|
120 |
-
|
121 |
properties=list(poses.columns),
|
122 |
)
|
123 |
return poses["CNNscore"]
|
@@ -131,7 +129,7 @@ def predict (input_sequence, input_ligand,input_msa, input_protein):
|
|
131 |
metrics = {"cnn_score": cnn_score}
|
132 |
end_time = time.time()
|
133 |
run_time = end_time - start_time
|
134 |
-
return ["
|
135 |
|
136 |
with gr.Blocks() as app:
|
137 |
|
|
|
18 |
|
19 |
from gradio_molecule3d import Molecule3D
|
20 |
|
21 |
+
def protonate_receptor_and_ligand(protein):
|
22 |
protein_out = protein.replace(".pdb","_H.pdb")
|
23 |
with open(protein_out, "w") as f:
|
24 |
subprocess.run(
|
|
|
26 |
stdout=f,
|
27 |
stderr=subprocess.DEVNULL,
|
28 |
)
|
|
|
|
|
29 |
|
30 |
|
31 |
def generate_conformers(ligand, num_confs=8):
|
32 |
+
mol = Chem.MolFromSmiles(
|
33 |
+
ligand
|
34 |
)
|
35 |
mol.RemoveAllConformers()
|
36 |
mol = Chem.AddHs(mol)
|
37 |
AllChem.EmbedMultipleConfs(mol, numConfs=num_confs, randomSeed=1)
|
38 |
AllChem.UFFOptimizeMoleculeConfs(mol)
|
39 |
with Chem.SDWriter(
|
40 |
+
"ligand.sdf"
|
41 |
) as writer:
|
42 |
for cid in range(mol.GetNumConformers()):
|
43 |
writer.write(mol, confId=cid)
|
|
|
82 |
"-r",
|
83 |
protein.replace(".pdb","_H.pdb"),
|
84 |
"-l",
|
85 |
+
"ligand.sdf",
|
86 |
"-o",
|
87 |
+
"ligand_output.sdf",
|
88 |
"--center_x", # bounding box matching PoseBusters methodology
|
89 |
str(0),
|
90 |
"--center_y",
|
|
|
109 |
)
|
110 |
# sort the poses from the multiple conformation runs, so overall best is first
|
111 |
poses = PandasTools.LoadSDF(
|
112 |
+
"ligand_output.sdf"
|
113 |
)
|
114 |
poses["CNNscore"] = poses["CNNscore"].astype(float)
|
115 |
gnina_order = poses.sort_values("CNNscore", ascending=False).reset_index(drop=True)
|
116 |
PandasTools.WriteSDF(
|
117 |
gnina_order,
|
118 |
+
"ligand_output.sdf",
|
119 |
properties=list(poses.columns),
|
120 |
)
|
121 |
return poses["CNNscore"]
|
|
|
129 |
metrics = {"cnn_score": cnn_score}
|
130 |
end_time = time.time()
|
131 |
run_time = end_time - start_time
|
132 |
+
return ["input_protein.pdb", "ligand_output.sdf"], metrics, run_time
|
133 |
|
134 |
with gr.Blocks() as app:
|
135 |
|