Spaces:
Sleeping
Sleeping
wip
Browse files
app.py
CHANGED
|
@@ -13,6 +13,8 @@ def get_index_of_element_containing_word(lst, word):
|
|
| 13 |
return indices[0] if indices else -1
|
| 14 |
|
| 15 |
pred_global = None
|
|
|
|
|
|
|
| 16 |
|
| 17 |
stl_preds = np.load("stl_species.npy")
|
| 18 |
df = pd.read_csv("gbif_full_filtered.csv")
|
|
@@ -36,30 +38,45 @@ def update_fn(val):
|
|
| 36 |
return gr.Dropdown(label="Name", choices=obs, interactive=True)
|
| 37 |
|
| 38 |
def text_fn(taxon, name):
|
| 39 |
-
global pred_global
|
| 40 |
|
| 41 |
species_index = get_index_of_element_containing_word(obs, name)
|
| 42 |
preds = np.flip(stl_preds[:, species_index].reshape(510, 510), 1)
|
| 43 |
|
| 44 |
pred_global = preds
|
|
|
|
| 45 |
cmap = plt.get_cmap('plasma')
|
| 46 |
|
| 47 |
rgba_img = cmap(preds)
|
| 48 |
rgb_img = np.delete(rgba_img, 3, 2)
|
| 49 |
-
blend = Image.blend(stl_base, Image.fromarray((rgb_img * 255).astype(np.uint8)),
|
| 50 |
rgb_img = np.array(blend)
|
| 51 |
#return gr.Image(preds, label="Predicted Heatmap", visible=True)
|
| 52 |
return rgb_img
|
| 53 |
|
| 54 |
def thresh_fn(val):
|
| 55 |
-
global pred_global
|
| 56 |
preds = deepcopy(pred_global)
|
| 57 |
preds[preds<val] = 0
|
| 58 |
preds[preds>=val] = 1
|
|
|
|
| 59 |
cmap = plt.get_cmap('plasma')
|
| 60 |
|
| 61 |
rgba_img = cmap(preds)
|
| 62 |
rgb_img = np.delete(rgba_img, 3, 2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
return rgb_img
|
| 64 |
|
| 65 |
with gr.Blocks() as demo:
|
|
@@ -79,10 +96,14 @@ with gr.Blocks() as demo:
|
|
| 79 |
with gr.Row():
|
| 80 |
slider = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.5, label="Confidence Threshold")
|
| 81 |
|
|
|
|
|
|
|
|
|
|
| 82 |
with gr.Row():
|
| 83 |
pred = gr.Image(label="Predicted Heatmap", visible=True)
|
| 84 |
|
| 85 |
check_button.click(text_fn, inputs=[inp, out], outputs=[pred])
|
| 86 |
slider.change(thresh_fn, slider, outputs=pred)
|
|
|
|
| 87 |
|
| 88 |
demo.launch()
|
|
|
|
| 13 |
return indices[0] if indices else -1
|
| 14 |
|
| 15 |
pred_global = None
|
| 16 |
+
alpha_global = 0.5
|
| 17 |
+
alpha_image = None
|
| 18 |
|
| 19 |
stl_preds = np.load("stl_species.npy")
|
| 20 |
df = pd.read_csv("gbif_full_filtered.csv")
|
|
|
|
| 38 |
return gr.Dropdown(label="Name", choices=obs, interactive=True)
|
| 39 |
|
| 40 |
def text_fn(taxon, name):
|
| 41 |
+
global pred_global, alpha_global, alpha_image
|
| 42 |
|
| 43 |
species_index = get_index_of_element_containing_word(obs, name)
|
| 44 |
preds = np.flip(stl_preds[:, species_index].reshape(510, 510), 1)
|
| 45 |
|
| 46 |
pred_global = preds
|
| 47 |
+
alpha_image = preds
|
| 48 |
cmap = plt.get_cmap('plasma')
|
| 49 |
|
| 50 |
rgba_img = cmap(preds)
|
| 51 |
rgb_img = np.delete(rgba_img, 3, 2)
|
| 52 |
+
blend = Image.blend(stl_base, Image.fromarray((rgb_img * 255).astype(np.uint8)), alpha_global)
|
| 53 |
rgb_img = np.array(blend)
|
| 54 |
#return gr.Image(preds, label="Predicted Heatmap", visible=True)
|
| 55 |
return rgb_img
|
| 56 |
|
| 57 |
def thresh_fn(val):
|
| 58 |
+
global pred_global, alpha_global, alpha_image
|
| 59 |
preds = deepcopy(pred_global)
|
| 60 |
preds[preds<val] = 0
|
| 61 |
preds[preds>=val] = 1
|
| 62 |
+
alpha_image = deepcopy(preds)
|
| 63 |
cmap = plt.get_cmap('plasma')
|
| 64 |
|
| 65 |
rgba_img = cmap(preds)
|
| 66 |
rgb_img = np.delete(rgba_img, 3, 2)
|
| 67 |
+
blend = Image.blend(stl_base, Image.fromarray((rgb_img * 255).astype(np.uint8)), alpha_global)
|
| 68 |
+
rgb_img = np.array(blend)
|
| 69 |
+
return rgb_img
|
| 70 |
+
|
| 71 |
+
def alpha_fn(val):
|
| 72 |
+
global pred_global, alpha_global, alpha_image
|
| 73 |
+
alpha_global = val
|
| 74 |
+
preds = deepcopy(alpha_image)
|
| 75 |
+
cmap = plt.get_cmap('plasma')
|
| 76 |
+
rgba_img = cmap(preds)
|
| 77 |
+
rgb_img = np.delete(rgba_img, 3, 2)
|
| 78 |
+
blend = Image.blend(stl_base, Image.fromarray((rgb_img * 255).astype(np.uint8)), alpha_global)
|
| 79 |
+
rgb_img = np.array(blend)
|
| 80 |
return rgb_img
|
| 81 |
|
| 82 |
with gr.Blocks() as demo:
|
|
|
|
| 96 |
with gr.Row():
|
| 97 |
slider = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.5, label="Confidence Threshold")
|
| 98 |
|
| 99 |
+
with gr.Row():
|
| 100 |
+
alpha = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.5, label="Image Transparency")
|
| 101 |
+
|
| 102 |
with gr.Row():
|
| 103 |
pred = gr.Image(label="Predicted Heatmap", visible=True)
|
| 104 |
|
| 105 |
check_button.click(text_fn, inputs=[inp, out], outputs=[pred])
|
| 106 |
slider.change(thresh_fn, slider, outputs=pred)
|
| 107 |
+
alpha.change(alpha_fn, alpha, outputs=pred)
|
| 108 |
|
| 109 |
demo.launch()
|