Spaces:
Running
Running
import numpy as np | |
from sentence_transformers import SentenceTransformer | |
def search_relevant_chunks(query, index, documents, model, top_k=5): | |
query_embedding = model.encode(query, convert_to_tensor=True) | |
distances, indices = index.search(np.array([query_embedding]), top_k) | |
return [documents[i]["content"] for i in indices[0]] |