title: Jewelry Recommender emoji: 💎 colorFrom: purple colorTo: pink sdk: gradio sdk_version: 3.50.2 app_file: updatedcode/app.py pinned: false license: mit duplicated_from: null models: - efficientnet - faiss python_version: 3.9 datasets: - None tags: - image-similarity - jewelry - recommendation-system - computer-vision # Gradio configuration gradio: theme: default dark_background: False live: False capture_session: False allow_flagging: never queue_concurrency_count: 1 max_file_size: 10 # System dependencies dependencies: -torch>=2.0.0 -torchvision>=0.15.0 -faiss-cpu>=1.7.0 -scikit-learn>=1.0.0 -numpy>=1.20.0 -pandas>=1.3.0 -pyarrow>=7.0.0 -matplotlib>=3.5.0 -Pillow>=9.0.0 -tqdm>=4.60.0 -ipywidgets>=7.7.0 -gdown>=4.5.0 -gradio>=3.0.0 -concurrent-log-handler>=0.9.20 -plotly>=5.10.0 # Space hardware hardware: accelerator: cpu cpu: 2 memory: 16GB # Required files for the application files: - app.py - jewelry_index.idx - jewelry_metadata.pkl - README.md # Documentation information: description: > This Jewelry Recommender app uses computer vision to find similar jewelry items based on a reference image. Upload an image of jewelry, provide an image URL, or paste a base64-encoded image to get visually similar recommendations. The system uses an EfficientNet model for feature extraction and FAISS for fast similarity search. license: MIT author: Maazuddin repository: https://github.com/Maazuddin1/jewelry-recommender