# -*- coding: utf-8 -*- """GradioASRdemo.ipynb Automatically generated by Colab. Original file is located at https://colab.research.google.com/drive/1OgSEOxvR1jUIG-aE0dQHXpr9-ODs63Ll """ import gradio as gr from transformers import AutoFeatureExtractor, AutoModelForSeq2SeqLM, AutoTokenizer, pipeline model_name1 = "openai/whisper-tiny" feature_extractor = AutoFeatureExtractor.from_pretrained(model_name1) sampling_rate = feature_extractor.sampling_rate asr = pipeline("automatic-speech-recognition", model=model_name1) def speech_to_text(input_file): transcribed_text = asr(input_file, chunk_length_s=30) #, chunk_length_s=30 return transcribed_text["text"] #inputs=gr.Audio(source="upload", type="filepath", label="Upload your audio") inputs=gr.Audio(sources="upload", type="filepath", label="Upload Kannada audio file") # outputs=gr.Textbox() # examples = [["test1.wav"], ["test2.wav"]] description = "Demo for Kannada ASR model " gr.Interface( speech_to_text, inputs = inputs, outputs = "text", title="Kannada ASR model", ).launch()