Spaces:
Runtime error
Runtime error
Commit
·
e58b2ee
1
Parent(s):
408dff3
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,7 +2,7 @@ import logging
|
|
| 2 |
logging.getLogger('numba').setLevel(logging.WARNING)
|
| 3 |
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
| 4 |
logging.getLogger('urllib3').setLevel(logging.WARNING)
|
| 5 |
-
import
|
| 6 |
import re
|
| 7 |
import numpy as np
|
| 8 |
import IPython.display as ipd
|
|
@@ -16,124 +16,251 @@ import gradio as gr
|
|
| 16 |
import time
|
| 17 |
import datetime
|
| 18 |
import os
|
| 19 |
-
import
|
| 20 |
-
import
|
| 21 |
-
|
| 22 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
for ch in string:
|
| 24 |
if ord(ch) > 0x3040 and ord(ch) < 0x30FF:
|
| 25 |
return True
|
| 26 |
return False
|
| 27 |
-
|
| 28 |
-
def is_english(string):
|
| 29 |
import re
|
| 30 |
pattern = re.compile('^[A-Za-z0-9.,:;!?()_*"\' ]+$')
|
| 31 |
if pattern.fullmatch(string):
|
| 32 |
return True
|
| 33 |
else:
|
| 34 |
return False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
</span>
|
| 56 |
-
</div>
|
| 57 |
-
</div>
|
| 58 |
-
"""
|
| 59 |
-
output_html = f"""
|
| 60 |
-
<div style="height: 400px; overflow-y: scroll; padding: 10px;">
|
| 61 |
-
{chat_html}
|
| 62 |
-
</div>
|
| 63 |
-
"""
|
| 64 |
-
return output_html
|
| 65 |
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
final_list = []
|
| 70 |
-
for i in result_list:
|
| 71 |
-
if is_english(i):
|
| 72 |
-
i = romajitable.to_kana(i).katakana
|
| 73 |
-
i = i.replace('\n','').replace(' ','')
|
| 74 |
-
#Current length of single sentence: 20
|
| 75 |
-
if len(i)>1:
|
| 76 |
-
if len(i) > 20:
|
| 77 |
-
try:
|
| 78 |
-
cur_list = re.split(r'。|!', i)
|
| 79 |
-
for i in cur_list:
|
| 80 |
-
if len(i)>1:
|
| 81 |
-
final_list.append(i+'。')
|
| 82 |
-
except:
|
| 83 |
-
pass
|
| 84 |
-
else:
|
| 85 |
-
final_list.append(i)
|
| 86 |
-
final_list = [x for x in final_list if x != '']
|
| 87 |
-
print(final_list)
|
| 88 |
-
return final_list
|
| 89 |
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
with open('log.pickle', 'rb') as f:
|
| 98 |
-
messages = pickle.load(f)
|
| 99 |
-
messages.append({"role": "user", "content": text},)
|
| 100 |
-
chat = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=messages)
|
| 101 |
-
reply = chat.choices[0].message.content
|
| 102 |
-
messages.append({"role": "assistant", "content": reply})
|
| 103 |
-
print(messages[-1])
|
| 104 |
-
if len(messages) == 12:
|
| 105 |
-
messages[6:10] = messages[8:]
|
| 106 |
-
del messages[-2:]
|
| 107 |
-
with open('log.pickle', 'wb') as f:
|
| 108 |
-
messages2 = []
|
| 109 |
-
pickle.dump(messages2, f)
|
| 110 |
-
return reply,messages
|
| 111 |
-
except:
|
| 112 |
-
messages.append({"role": "user", "content": text},)
|
| 113 |
-
chat = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=messages)
|
| 114 |
-
reply = chat.choices[0].message.content
|
| 115 |
-
messages.append({"role": "assistant", "content": reply})
|
| 116 |
-
print(messages[-1])
|
| 117 |
-
if len(messages) == 12:
|
| 118 |
-
messages[6:10] = messages[8:]
|
| 119 |
-
del messages[-2:]
|
| 120 |
-
with open('log.pickle', 'wb') as f:
|
| 121 |
-
pickle.dump(messages, f)
|
| 122 |
-
return reply,messages
|
| 123 |
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
data = json.load(f)
|
| 128 |
-
return data['symbols']
|
| 129 |
|
| 130 |
-
|
| 131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
if language == "中文":
|
| 133 |
tts_input1 = "[ZH]" + text + "[ZH]"
|
| 134 |
return tts_input1
|
| 135 |
elif language == "自动":
|
| 136 |
-
tts_input1 = f"[JA]{text}[JA]" if is_japanese(text) else f"[ZH]{text}[ZH]"
|
| 137 |
return tts_input1
|
| 138 |
elif language == "日文":
|
| 139 |
tts_input1 = "[JA]" + text + "[JA]"
|
|
@@ -143,180 +270,119 @@ def sle(language,text):
|
|
| 143 |
return tts_input1
|
| 144 |
elif language == "手动":
|
| 145 |
return text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
t1 = time.time()
|
| 174 |
-
stn_tst = get_text(sle(language,text)
|
| 175 |
with torch.no_grad():
|
| 176 |
-
x_tst = stn_tst.unsqueeze(0).to(dev)
|
| 177 |
-
x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(dev)
|
| 178 |
-
sid = torch.LongTensor([speaker_id]).to(dev)
|
| 179 |
-
audio = net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=n_scale, noise_scale_w=n_scale_w, length_scale=l_scale)[0][0,0].data.cpu().float().numpy()
|
| 180 |
t2 = time.time()
|
| 181 |
spending_time = "推理时间为:"+str(t2-t1)+"s"
|
| 182 |
print(spending_time)
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
a = ['【','[','(','(']
|
| 195 |
-
b = ['】',']',')',')']
|
| 196 |
-
for i in a:
|
| 197 |
-
text = text.replace(i,'<')
|
| 198 |
-
for i in b:
|
| 199 |
-
text = text.replace(i,'>')
|
| 200 |
-
final_list = extrac(text.replace('���','').replace('”',''))
|
| 201 |
-
audio_fin = []
|
| 202 |
-
c = 0
|
| 203 |
-
t = datetime.timedelta(seconds=0)
|
| 204 |
-
for sentence in final_list:
|
| 205 |
-
try:
|
| 206 |
-
f1 = open("subtitles.srt",'w',encoding='utf-8')
|
| 207 |
-
c +=1
|
| 208 |
-
stn_tst = get_text(sle(language,sentence),hps)
|
| 209 |
-
with torch.no_grad():
|
| 210 |
-
x_tst = stn_tst.unsqueeze(0).to(dev)
|
| 211 |
-
x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(dev)
|
| 212 |
-
sid = torch.LongTensor([speaker_id]).to(dev)
|
| 213 |
-
t1 = time.time()
|
| 214 |
-
audio = net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=n_scale, noise_scale_w=n_scale_w, length_scale=l_scale)[0][0,0].data.cpu().float().numpy()
|
| 215 |
-
t2 = time.time()
|
| 216 |
-
spending_time = "第"+str(c)+"句的推理时间为:"+str(t2-t1)+"s"
|
| 217 |
-
print(spending_time)
|
| 218 |
-
time_start = str(t).split(".")[0] + "," + str(t.microseconds)[:3]
|
| 219 |
-
last_time = datetime.timedelta(seconds=len(audio)/float(22050))
|
| 220 |
-
t+=last_time
|
| 221 |
-
time_end = str(t).split(".")[0] + "," + str(t.microseconds)[:3]
|
| 222 |
-
print(time_end)
|
| 223 |
-
f1.write(str(c-1)+'\n'+time_start+' --> '+time_end+'\n'+sentence+'\n\n')
|
| 224 |
-
audio_fin.append(audio)
|
| 225 |
-
except:
|
| 226 |
-
pass
|
| 227 |
-
try:
|
| 228 |
-
write(audiopath + '.wav',22050,np.concatenate(audio_fin))
|
| 229 |
-
if is_audio:
|
| 230 |
-
for i in range(repeat_time):
|
| 231 |
-
cmd = 'ffmpeg -y -i ' + audiopath + '.wav' + ' -ar 44100 '+ audiopath.replace('temp','temp'+str(i))
|
| 232 |
-
os.system(cmd)
|
| 233 |
-
|
| 234 |
-
except:
|
| 235 |
-
pass
|
| 236 |
-
|
| 237 |
-
file_path = "subtitles.srt"
|
| 238 |
-
return (hps.data.sampling_rate, np.concatenate(audio_fin)),file_path,htm
|
| 239 |
-
return tts_fn
|
| 240 |
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
gr.Markdown(
|
| 279 |
-
"# <center>Seisho-Nijigasaki vits-models with chatgpt support\n"
|
| 280 |
-
"# <center>少歌&&虹团vits\n"
|
| 281 |
-
"## <center> Please do not generate content that could infringe upon the rights or cause harm to individuals or organizations.\n"
|
| 282 |
-
"## <center> 四个模型包含了少歌及虹团的大部分角色,第二个正在训练的模型加入了梁芷柔和墨小菊,目前已可以进行质量较高的中文合成。数据集版权归官方所有,严禁商用及恶意使用\n"
|
| 283 |
-
"## <center> 请不要生成会对个人以及企划造成侵害,带有侮辱性的言论,自觉遵守相关法律 >>> http://www.cac.gov.cn/2023-04/11/c_1682854275475410.htm \n"
|
| 284 |
-
"## <center> 效果不佳时可将噪音和噪音偏差调为0.自带chatgpt支持,长句分割支持,srt字幕生成,可修改音频生成路径至live2d语音路径,建议本地使用。\n"
|
| 285 |
-
|
| 286 |
-
)
|
| 287 |
-
with gr.Tabs():
|
| 288 |
-
for i in schools:
|
| 289 |
-
with gr.TabItem(i):
|
| 290 |
-
for (sid, name, title, example, tts_fn) in models[schools.index(i)]:
|
| 291 |
-
with gr.TabItem(name):
|
| 292 |
-
with gr.Column():
|
| 293 |
-
with gr.Row():
|
| 294 |
-
with gr.Row():
|
| 295 |
-
gr.Markdown(
|
| 296 |
-
'<div align="center">'
|
| 297 |
-
f'<img style="width:auto;height:400px;" src="file/image/{name}.png">'
|
| 298 |
-
'</div>'
|
| 299 |
-
)
|
| 300 |
-
output_UI = gr.outputs.HTML()
|
| 301 |
-
with gr.Row():
|
| 302 |
-
with gr.Column(scale=0.85):
|
| 303 |
-
input1 = gr.TextArea(label="Text", value=example,lines = 1)
|
| 304 |
-
with gr.Column(scale=0.15, min_width=0):
|
| 305 |
-
btnVC = gr.Button("Send")
|
| 306 |
-
output1 = gr.Audio(label="采样率22050")
|
| 307 |
-
with gr.Accordion(label="Setting(TTS)", open=False):
|
| 308 |
-
input2 = gr.Dropdown(label="Language", choices=lan, value="自动", interactive=True)
|
| 309 |
-
input4 = gr.Slider(minimum=0, maximum=1.0, label="更改噪声比例(noise scale),以控制情感", value=0.6)
|
| 310 |
-
input5 = gr.Slider(minimum=0, maximum=1.0, label="更改噪声偏差(noise scale w),以控制音素长短", value=0.668)
|
| 311 |
-
input6 = gr.Slider(minimum=0.1, maximum=10, label="duration", value=1)
|
| 312 |
-
with gr.Accordion(label="Advanced Setting(GPT3.5接口+长句子合成,建议克隆本仓库后运行main.py)", open=False):
|
| 313 |
-
input3 = gr.Checkbox(value=False, label="长句切割(小说合成)")
|
| 314 |
-
output2 = gr.outputs.File(label="字幕文件:subtitles.srt")
|
| 315 |
-
api_input1 = gr.Checkbox(value=False, label="接入chatgpt")
|
| 316 |
-
api_input2 = gr.TextArea(label="api-key",lines=1,value = '见 https://openai.com/blog/openai-api')
|
| 317 |
-
audio_input1 = gr.Checkbox(value=False, label="修改音频路径(live2d)")
|
| 318 |
-
audio_input2 = gr.TextArea(label="音频路径",lines=1,value = '#参考 D:/app_develop/live2d_whole/2010002/sounds/temp.wav')
|
| 319 |
-
audio_input3 = gr.Dropdown(label="重复生成次数", choices=list(range(101)), value='0', interactive=True)
|
| 320 |
-
btnVC.click(tts_fn, inputs=[api_input1,api_input2,audio_input1,audio_input2,audio_input3,input1,input2,input3,input4,input5,input6], outputs=[output1,output2,output_UI])
|
| 321 |
-
|
| 322 |
-
app.launch()
|
|
|
|
| 2 |
logging.getLogger('numba').setLevel(logging.WARNING)
|
| 3 |
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
| 4 |
logging.getLogger('urllib3').setLevel(logging.WARNING)
|
| 5 |
+
import romajitable
|
| 6 |
import re
|
| 7 |
import numpy as np
|
| 8 |
import IPython.display as ipd
|
|
|
|
| 16 |
import time
|
| 17 |
import datetime
|
| 18 |
import os
|
| 19 |
+
import librosa
|
| 20 |
+
from mel_processing import spectrogram_torch
|
| 21 |
+
class VitsGradio:
|
| 22 |
+
def __init__(self):
|
| 23 |
+
self.dev = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 24 |
+
self.lan = ["中文","日文","自动","手动"]
|
| 25 |
+
self.idols = ["c1","c2","高咲侑","歩夢","かすみ","しずく","果林","愛","彼方","せつ菜","璃奈","栞子","エマ","ランジュ","ミア","華恋","まひる","なな","クロディーヌ","ひかり",'純那',"香子","真矢","双葉","ミチル","メイファン","やちよ","晶","いちえ","ゆゆ子","塁","珠緒","あるる","ララフィン","美空","静羽","あるる"]
|
| 26 |
+
self.modelPaths = []
|
| 27 |
+
for root,dirs,files in os.walk("checkpoints"):
|
| 28 |
+
for dir in dirs:
|
| 29 |
+
self.modelPaths.append(dir)
|
| 30 |
+
with gr.Blocks() as self.Vits:
|
| 31 |
+
gr.Markdown(
|
| 32 |
+
"## <center> Lovelive虹团中日双语VITS\n"
|
| 33 |
+
"### <center> 请不要生成会对个人以及企划造成侵害的内容\n"
|
| 34 |
+
"<div align='center'>目前有标贝普通话版,去标贝版,少歌模型还是大饼状态</div>"
|
| 35 |
+
'<div align="center"><a>参数说明:由于爱抖露们过于有感情,合成日语时建议将噪声比例调节至0.2-0.3区间,噪声偏差对应着每个字之间的间隔,对普通话影响较大,duration代表整体语速</div>'
|
| 36 |
+
'<div align="center"><a>合成前请先选择模型,否则第一次合成不一定成功。长段落/小说合成建议colab或本地运行</div>')
|
| 37 |
+
with gr.Tab("TTS合成"):
|
| 38 |
+
with gr.Row():
|
| 39 |
+
with gr.Column():
|
| 40 |
+
with gr.Row():
|
| 41 |
+
with gr.Column():
|
| 42 |
+
input1 = gr.TextArea(label="Text", value="为什么你会那么熟练啊?你和雪菜亲过多少次了")
|
| 43 |
+
input2 = gr.Dropdown(label="Language", choices=self.lan, value="自动", interactive=True)
|
| 44 |
+
input3 = gr.Dropdown(label="Speaker", choices=self.idols, value="歩夢", interactive=True)
|
| 45 |
+
btnVC = gr.Button("Submit")
|
| 46 |
+
with gr.Column():
|
| 47 |
+
input4 = gr.Slider(minimum=0, maximum=1.0, label="更改噪声比例(noise scale),以控制情感", value=0.267)
|
| 48 |
+
input5 = gr.Slider(minimum=0, maximum=1.0, label="更改噪声偏差(noise scale w),以控制音素长短", value=0.7)
|
| 49 |
+
input6 = gr.Slider(minimum=0.1, maximum=10, label="duration", value=1)
|
| 50 |
+
output1 = gr.Audio(label="采样率22050")
|
| 51 |
+
btnVC.click(self.infer, inputs=[input1, input2, input3, input4, input5, input6], outputs=[output1])
|
| 52 |
+
with gr.Tab("选择模型"):
|
| 53 |
+
with gr.Column():
|
| 54 |
+
modelstrs = gr.Dropdown(label = "模型", choices = self.modelPaths, value = self.modelPaths[0], type = "value")
|
| 55 |
+
btnMod = gr.Button("载入模型")
|
| 56 |
+
statusa = gr.TextArea()
|
| 57 |
+
btnMod.click(self.loadCk, inputs=[modelstrs], outputs = [statusa])
|
| 58 |
+
with gr.Tab("Voice Conversion"):
|
| 59 |
+
gr.Markdown("""
|
| 60 |
+
录制或上传声音,并选择要转换的音色。
|
| 61 |
+
""")
|
| 62 |
+
with gr.Column():
|
| 63 |
+
record_audio = gr.Audio(label="record your voice", source="microphone")
|
| 64 |
+
upload_audio = gr.Audio(label="or upload audio here", source="upload")
|
| 65 |
+
source_speaker = gr.Dropdown(choices=self.idols, value="歩夢", label="source speaker")
|
| 66 |
+
target_speaker = gr.Dropdown(choices=self.idols, value="歩夢", label="target speaker")
|
| 67 |
+
with gr.Column():
|
| 68 |
+
message_box = gr.Textbox(label="Message")
|
| 69 |
+
converted_audio = gr.Audio(label='converted audio')
|
| 70 |
+
btn = gr.Button("Convert!")
|
| 71 |
+
btn.click(self.vc_fn, inputs=[source_speaker, target_speaker, record_audio, upload_audio],
|
| 72 |
+
outputs=[message_box, converted_audio])
|
| 73 |
+
with gr.Tab("小说合成(带字幕)"):
|
| 74 |
+
with gr.Row():
|
| 75 |
+
with gr.Column():
|
| 76 |
+
with gr.Row():
|
| 77 |
+
with gr.Column():
|
| 78 |
+
input1 = gr.TextArea(label="建议colab或本地克隆后运行本仓库", value="为什么你会那么熟练啊?你和雪菜亲过多少次了")
|
| 79 |
+
input2 = gr.Dropdown(label="Language", choices=self.lan, value="自动", interactive=True)
|
| 80 |
+
input3 = gr.Dropdown(label="Speaker", choices=self.idols, value="歩夢", interactive=True)
|
| 81 |
+
btnVC = gr.Button("Submit")
|
| 82 |
+
with gr.Column():
|
| 83 |
+
input4 = gr.Slider(minimum=0, maximum=1.0, label="更改噪声比例(noise scale),以控制情感", value=0.267)
|
| 84 |
+
input5 = gr.Slider(minimum=0, maximum=1.0, label="更改噪声偏差(noise scale w),以控制音素长短", value=0.7)
|
| 85 |
+
input6 = gr.Slider(minimum=0.1, maximum=10, label="Duration", value=1)
|
| 86 |
+
output1 = gr.Audio(label="采样率22050")
|
| 87 |
+
subtitle = gr.outputs.File(label="字幕文件:subtitles.srt")
|
| 88 |
+
btnVC.click(self.infer2, inputs=[input1, input2, input3, input4, input5, input6], outputs=[output1,subtitle])
|
| 89 |
+
|
| 90 |
+
def loadCk(self,path):
|
| 91 |
+
self.hps = utils.get_hparams_from_file(f"checkpoints/{path}/config.json")
|
| 92 |
+
self.net_g = SynthesizerTrn(
|
| 93 |
+
len(symbols),
|
| 94 |
+
self.hps.data.filter_length // 2 + 1,
|
| 95 |
+
self.hps.train.segment_size // self.hps.data.hop_length,
|
| 96 |
+
n_speakers=self.hps.data.n_speakers,
|
| 97 |
+
**self.hps.model).to(self.dev)
|
| 98 |
+
_ = self.net_g.eval()
|
| 99 |
+
_ = utils.load_checkpoint(f"checkpoints/{path}/model.pth", self.net_g)
|
| 100 |
+
return "success"
|
| 101 |
+
|
| 102 |
+
def get_text(self,text):
|
| 103 |
+
text_norm = text_to_sequence(text,self.hps.data.text_cleaners)
|
| 104 |
+
if self.hps.data.add_blank:
|
| 105 |
+
text_norm = commons.intersperse(text_norm, 0)
|
| 106 |
+
text_norm = torch.LongTensor(text_norm)
|
| 107 |
+
return text_norm
|
| 108 |
+
|
| 109 |
+
def is_japanese(self,string):
|
| 110 |
for ch in string:
|
| 111 |
if ord(ch) > 0x3040 and ord(ch) < 0x30FF:
|
| 112 |
return True
|
| 113 |
return False
|
| 114 |
+
|
| 115 |
+
def is_english(self,string):
|
| 116 |
import re
|
| 117 |
pattern = re.compile('^[A-Za-z0-9.,:;!?()_*"\' ]+$')
|
| 118 |
if pattern.fullmatch(string):
|
| 119 |
return True
|
| 120 |
else:
|
| 121 |
return False
|
| 122 |
+
|
| 123 |
+
def selection(self,speaker):
|
| 124 |
+
if speaker == "高咲侑":
|
| 125 |
+
spk = 0
|
| 126 |
+
return spk
|
| 127 |
|
| 128 |
+
elif speaker == "歩夢":
|
| 129 |
+
spk = 1
|
| 130 |
+
return spk
|
| 131 |
+
|
| 132 |
+
elif speaker == "かすみ":
|
| 133 |
+
spk = 2
|
| 134 |
+
return spk
|
| 135 |
+
|
| 136 |
+
elif speaker == "しずく":
|
| 137 |
+
spk = 3
|
| 138 |
+
return spk
|
| 139 |
+
|
| 140 |
+
elif speaker == "果林":
|
| 141 |
+
spk = 4
|
| 142 |
+
return spk
|
| 143 |
+
|
| 144 |
+
elif speaker == "愛":
|
| 145 |
+
spk = 5
|
| 146 |
+
return spk
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 147 |
|
| 148 |
+
elif speaker == "彼方":
|
| 149 |
+
spk = 6
|
| 150 |
+
return spk
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
|
| 152 |
+
elif speaker == "せつ菜":
|
| 153 |
+
spk = 7
|
| 154 |
+
return spk
|
| 155 |
+
elif speaker == "エマ":
|
| 156 |
+
spk = 8
|
| 157 |
+
return spk
|
| 158 |
+
elif speaker == "璃奈":
|
| 159 |
+
spk = 9
|
| 160 |
+
return spk
|
| 161 |
+
elif speaker == "栞子":
|
| 162 |
+
spk = 10
|
| 163 |
+
return spk
|
| 164 |
+
elif speaker == "ランジュ":
|
| 165 |
+
spk = 11
|
| 166 |
+
return spk
|
| 167 |
+
elif speaker == "ミア":
|
| 168 |
+
spk = 12
|
| 169 |
+
return spk
|
| 170 |
+
|
| 171 |
+
elif speaker == "派蒙":
|
| 172 |
+
spk = 16
|
| 173 |
+
return spk
|
| 174 |
+
|
| 175 |
+
elif speaker == "c1":
|
| 176 |
+
spk = 18
|
| 177 |
+
return spk
|
| 178 |
|
| 179 |
+
elif speaker == "c2":
|
| 180 |
+
spk = 19
|
| 181 |
+
return spk
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
|
| 183 |
+
elif speaker == "華恋":
|
| 184 |
+
spk = 21
|
| 185 |
+
return spk
|
|
|
|
|
|
|
| 186 |
|
| 187 |
+
elif speaker == "まひる":
|
| 188 |
+
spk = 22
|
| 189 |
+
return spk
|
| 190 |
+
|
| 191 |
+
elif speaker == "なな":
|
| 192 |
+
spk = 23
|
| 193 |
+
return spk
|
| 194 |
+
|
| 195 |
+
elif speaker == "クロディーヌ":
|
| 196 |
+
spk = 24
|
| 197 |
+
return spk
|
| 198 |
+
|
| 199 |
+
elif speaker == "ひかり":
|
| 200 |
+
spk = 25
|
| 201 |
+
return spk
|
| 202 |
+
|
| 203 |
+
elif speaker == "純那":
|
| 204 |
+
spk = 26
|
| 205 |
+
return spk
|
| 206 |
+
|
| 207 |
+
elif speaker == "香子":
|
| 208 |
+
spk = 27
|
| 209 |
+
return spk
|
| 210 |
+
|
| 211 |
+
elif speaker == "真矢":
|
| 212 |
+
spk = 28
|
| 213 |
+
return spk
|
| 214 |
+
elif speaker == "双葉":
|
| 215 |
+
spk = 29
|
| 216 |
+
return spk
|
| 217 |
+
elif speaker == "ミチル":
|
| 218 |
+
spk = 30
|
| 219 |
+
return spk
|
| 220 |
+
elif speaker == "メイファン":
|
| 221 |
+
spk = 31
|
| 222 |
+
return spk
|
| 223 |
+
elif speaker == "やちよ":
|
| 224 |
+
spk = 32
|
| 225 |
+
return spk
|
| 226 |
+
elif speaker == "晶":
|
| 227 |
+
spk = 33
|
| 228 |
+
return spk
|
| 229 |
+
elif speaker == "いちえ":
|
| 230 |
+
spk = 34
|
| 231 |
+
return spk
|
| 232 |
+
elif speaker == "ゆゆ子":
|
| 233 |
+
spk = 35
|
| 234 |
+
return spk
|
| 235 |
+
elif speaker == "塁":
|
| 236 |
+
spk = 36
|
| 237 |
+
return spk
|
| 238 |
+
elif speaker == "珠緒":
|
| 239 |
+
spk = 37
|
| 240 |
+
return spk
|
| 241 |
+
elif speaker == "あるる":
|
| 242 |
+
spk = 38
|
| 243 |
+
return spk
|
| 244 |
+
elif speaker == "ララフィン":
|
| 245 |
+
spk = 39
|
| 246 |
+
return spk
|
| 247 |
+
elif speaker == "美空":
|
| 248 |
+
spk = 40
|
| 249 |
+
return spk
|
| 250 |
+
elif speaker == "静羽":
|
| 251 |
+
spk = 41
|
| 252 |
+
return spk
|
| 253 |
+
else:
|
| 254 |
+
return 0
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
def sle(self,language,text):
|
| 258 |
+
text = text.replace('\n','。').replace(' ',',')
|
| 259 |
if language == "中文":
|
| 260 |
tts_input1 = "[ZH]" + text + "[ZH]"
|
| 261 |
return tts_input1
|
| 262 |
elif language == "自动":
|
| 263 |
+
tts_input1 = f"[JA]{text}[JA]" if self.is_japanese(text) else f"[ZH]{text}[ZH]"
|
| 264 |
return tts_input1
|
| 265 |
elif language == "日文":
|
| 266 |
tts_input1 = "[JA]" + text + "[JA]"
|
|
|
|
| 270 |
return tts_input1
|
| 271 |
elif language == "手动":
|
| 272 |
return text
|
| 273 |
+
|
| 274 |
+
def extrac(self,text):
|
| 275 |
+
text = re.sub("<[^>]*>","",text)
|
| 276 |
+
result_list = re.split(r'\n', text)
|
| 277 |
+
final_list = []
|
| 278 |
+
for i in result_list:
|
| 279 |
+
if self.is_english(i):
|
| 280 |
+
i = romajitable.to_kana(i).katakana
|
| 281 |
+
i = i.replace('\n','').replace(' ','')
|
| 282 |
+
#Current length of single sentence: 20
|
| 283 |
+
if len(i)>1:
|
| 284 |
+
if len(i) > 20:
|
| 285 |
+
try:
|
| 286 |
+
cur_list = re.split(r'。|!', i)
|
| 287 |
+
for i in cur_list:
|
| 288 |
+
if len(i)>1:
|
| 289 |
+
final_list.append(i+'。')
|
| 290 |
+
except:
|
| 291 |
+
pass
|
| 292 |
+
else:
|
| 293 |
+
final_list.append(i)
|
| 294 |
+
final_list = [x for x in final_list if x != '']
|
| 295 |
+
print(final_list)
|
| 296 |
+
return final_list
|
| 297 |
+
|
| 298 |
+
def vc_fn(self,original_speaker, target_speaker, record_audio, upload_audio):
|
| 299 |
+
input_audio = record_audio if record_audio is not None else upload_audio
|
| 300 |
+
if input_audio is None:
|
| 301 |
+
return "You need to record or upload an audio", None
|
| 302 |
+
sampling_rate, audio = input_audio
|
| 303 |
+
original_speaker_id = self.selection(original_speaker)
|
| 304 |
+
target_speaker_id = self.selection(target_speaker)
|
| 305 |
|
| 306 |
+
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
|
| 307 |
+
if len(audio.shape) > 1:
|
| 308 |
+
audio = librosa.to_mono(audio.transpose(1, 0))
|
| 309 |
+
if sampling_rate != self.hps.data.sampling_rate:
|
| 310 |
+
audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=self.hps.data.sampling_rate)
|
| 311 |
+
with torch.no_grad():
|
| 312 |
+
y = torch.FloatTensor(audio)
|
| 313 |
+
y = y / max(-y.min(), y.max()) / 0.99
|
| 314 |
+
y = y.to(self.dev)
|
| 315 |
+
y = y.unsqueeze(0)
|
| 316 |
+
spec = spectrogram_torch(y, self.hps.data.filter_length,
|
| 317 |
+
self.hps.data.sampling_rate, self.hps.data.hop_length, self.hps.data.win_length,
|
| 318 |
+
center=False).to(self.dev)
|
| 319 |
+
spec_lengths = torch.LongTensor([spec.size(-1)]).to(self.dev)
|
| 320 |
+
sid_src = torch.LongTensor([original_speaker_id]).to(self.dev)
|
| 321 |
+
sid_tgt = torch.LongTensor([target_speaker_id]).to(self.dev)
|
| 322 |
+
audio = self.net_g.voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt)[0][
|
| 323 |
+
0, 0].data.cpu().float().numpy()
|
| 324 |
+
del y, spec, spec_lengths, sid_src, sid_tgt
|
| 325 |
+
return "Success", (self.hps.data.sampling_rate, audio)
|
| 326 |
+
|
| 327 |
+
def infer(self, text ,language, speaker_id,n_scale= 0.667,n_scale_w = 0.8, l_scale = 1):
|
| 328 |
+
try:
|
| 329 |
+
speaker_id = int(self.selection(speaker_id))
|
|
|
|
|
|
|
| 330 |
t1 = time.time()
|
| 331 |
+
stn_tst = self.get_text(self.sle(language,text))
|
| 332 |
with torch.no_grad():
|
| 333 |
+
x_tst = stn_tst.unsqueeze(0).to(self.dev)
|
| 334 |
+
x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(self.dev)
|
| 335 |
+
sid = torch.LongTensor([speaker_id]).to(self.dev)
|
| 336 |
+
audio = self.net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=n_scale, noise_scale_w=n_scale_w, length_scale=l_scale)[0][0,0].data.cpu().float().numpy()
|
| 337 |
t2 = time.time()
|
| 338 |
spending_time = "推理时间为:"+str(t2-t1)+"s"
|
| 339 |
print(spending_time)
|
| 340 |
+
return (self.hps.data.sampling_rate, audio)
|
| 341 |
+
except:
|
| 342 |
+
self.hps = utils.get_hparams_from_file(f"checkpoints/biaobei/config.json")
|
| 343 |
+
self.net_g = SynthesizerTrn(
|
| 344 |
+
len(symbols),
|
| 345 |
+
self.hps.data.filter_length // 2 + 1,
|
| 346 |
+
self.hps.train.segment_size // self.hps.data.hop_length,
|
| 347 |
+
n_speakers=self.hps.data.n_speakers,
|
| 348 |
+
**self.hps.model).to(self.dev)
|
| 349 |
+
_ = self.net_g.eval()
|
| 350 |
+
_ = utils.load_checkpoint(f"checkpoints/biaobei/model.pth", self.net_g)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 351 |
|
| 352 |
+
def infer2(self, text ,language, speaker_id,n_scale= 0.667,n_scale_w = 0.8, l_scale = 1):
|
| 353 |
+
speaker_id = int(self.selection(speaker_id))
|
| 354 |
+
a = ['【','[','(','(']
|
| 355 |
+
b = ['】',']',')',')']
|
| 356 |
+
for i in a:
|
| 357 |
+
text = text.replace(i,'<')
|
| 358 |
+
for i in b:
|
| 359 |
+
text = text.replace(i,'>')
|
| 360 |
+
final_list = self.extrac(text.replace('“','').replace('”',''))
|
| 361 |
+
audio_fin = []
|
| 362 |
+
c = 0
|
| 363 |
+
t = datetime.timedelta(seconds=0)
|
| 364 |
+
f1 = open("subtitles.srt",'w',encoding='utf-8')
|
| 365 |
+
for sentence in final_list:
|
| 366 |
+
c +=1
|
| 367 |
+
stn_tst = self.get_text(self.sle(language,sentence))
|
| 368 |
+
with torch.no_grad():
|
| 369 |
+
x_tst = stn_tst.unsqueeze(0).to(self.dev)
|
| 370 |
+
x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(self.dev)
|
| 371 |
+
sid = torch.LongTensor([speaker_id]).to(self.dev)
|
| 372 |
+
t1 = time.time()
|
| 373 |
+
audio = self.net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=n_scale, noise_scale_w=n_scale_w, length_scale=l_scale)[0][0,0].data.cpu().float().numpy()
|
| 374 |
+
t2 = time.time()
|
| 375 |
+
spending_time = "第"+str(c)+"句的推理时间为:"+str(t2-t1)+"s"
|
| 376 |
+
print(spending_time)
|
| 377 |
+
time_start = str(t).split(".")[0] + "," + str(t.microseconds)[:3]
|
| 378 |
+
last_time = datetime.timedelta(seconds=len(audio)/float(22050))
|
| 379 |
+
t+=last_time
|
| 380 |
+
time_end = str(t).split(".")[0] + "," + str(t.microseconds)[:3]
|
| 381 |
+
print(time_end)
|
| 382 |
+
f1.write(str(c-1)+'\n'+time_start+' --> '+time_end+'\n'+sentence+'\n\n')
|
| 383 |
+
audio_fin.append(audio)
|
| 384 |
+
file_path = "subtitles.srt"
|
| 385 |
+
return (self.hps.data.sampling_rate, np.concatenate(audio_fin)),file_path
|
| 386 |
+
print("开始部署")
|
| 387 |
+
grVits = VitsGradio()
|
| 388 |
+
grVits.Vits.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|