Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	File size: 4,473 Bytes
			
			| f56cbd1 db74c3c f56cbd1 db74c3c | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 | import torch
import torchaudio
from transformers import AutoModel
def feature_loss(fmap_r, fmap_g):
    loss = 0
    for dr, dg in zip(fmap_r, fmap_g):
        for rl, gl in zip(dr, dg):
            rl = rl.float().detach()
            gl = gl.float()
            loss += torch.mean(torch.abs(rl - gl))
    return loss * 2
def discriminator_loss(disc_real_outputs, disc_generated_outputs):
    loss = 0
    r_losses = []
    g_losses = []
    for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
        dr = dr.float()
        dg = dg.float()
        r_loss = torch.mean((1 - dr) ** 2)
        g_loss = torch.mean(dg**2)
        loss += r_loss + g_loss
        r_losses.append(r_loss.item())
        g_losses.append(g_loss.item())
    return loss, r_losses, g_losses
def generator_loss(disc_outputs):
    loss = 0
    gen_losses = []
    for dg in disc_outputs:
        dg = dg.float()
        l = torch.mean((1 - dg) ** 2)
        gen_losses.append(l)
        loss += l
    return loss, gen_losses
def kl_loss(z_p, logs_q, m_p, logs_p, z_mask):
    """
    z_p, logs_q: [b, h, t_t]
    m_p, logs_p: [b, h, t_t]
    """
    z_p = z_p.float()
    logs_q = logs_q.float()
    m_p = m_p.float()
    logs_p = logs_p.float()
    z_mask = z_mask.float()
    kl = logs_p - logs_q - 0.5
    kl += 0.5 * ((z_p - m_p) ** 2) * torch.exp(-2.0 * logs_p)
    kl = torch.sum(kl * z_mask)
    l = kl / torch.sum(z_mask)
    return l
class WavLMLoss(torch.nn.Module):
    def __init__(self, model, wd, model_sr, slm_sr=16000):
        super(WavLMLoss, self).__init__()
        self.wavlm = AutoModel.from_pretrained(model)
        self.wd = wd
        self.resample = torchaudio.transforms.Resample(model_sr, slm_sr)
        self.wavlm.eval()
        for param in self.wavlm.parameters():
            param.requires_grad = False
    def forward(self, wav, y_rec):
        with torch.no_grad():
            wav_16 = self.resample(wav)
            wav_embeddings = self.wavlm(
                input_values=wav_16, output_hidden_states=True
            ).hidden_states
        y_rec_16 = self.resample(y_rec)
        y_rec_embeddings = self.wavlm(
            input_values=y_rec_16.squeeze(), output_hidden_states=True
        ).hidden_states
        floss = 0
        for er, eg in zip(wav_embeddings, y_rec_embeddings):
            floss += torch.mean(torch.abs(er - eg))
        return floss.mean()
    def generator(self, y_rec):
        y_rec_16 = self.resample(y_rec)
        y_rec_embeddings = self.wavlm(
            input_values=y_rec_16, output_hidden_states=True
        ).hidden_states
        y_rec_embeddings = (
            torch.stack(y_rec_embeddings, dim=1)
            .transpose(-1, -2)
            .flatten(start_dim=1, end_dim=2)
        )
        y_df_hat_g = self.wd(y_rec_embeddings)
        loss_gen = torch.mean((1 - y_df_hat_g) ** 2)
        return loss_gen
    def discriminator(self, wav, y_rec):
        with torch.no_grad():
            wav_16 = self.resample(wav)
            wav_embeddings = self.wavlm(
                input_values=wav_16, output_hidden_states=True
            ).hidden_states
            y_rec_16 = self.resample(y_rec)
            y_rec_embeddings = self.wavlm(
                input_values=y_rec_16, output_hidden_states=True
            ).hidden_states
            y_embeddings = (
                torch.stack(wav_embeddings, dim=1)
                .transpose(-1, -2)
                .flatten(start_dim=1, end_dim=2)
            )
            y_rec_embeddings = (
                torch.stack(y_rec_embeddings, dim=1)
                .transpose(-1, -2)
                .flatten(start_dim=1, end_dim=2)
            )
        y_d_rs = self.wd(y_embeddings)
        y_d_gs = self.wd(y_rec_embeddings)
        y_df_hat_r, y_df_hat_g = y_d_rs, y_d_gs
        r_loss = torch.mean((1 - y_df_hat_r) ** 2)
        g_loss = torch.mean((y_df_hat_g) ** 2)
        loss_disc_f = r_loss + g_loss
        return loss_disc_f.mean()
    def discriminator_forward(self, wav):
        with torch.no_grad():
            wav_16 = self.resample(wav)
            wav_embeddings = self.wavlm(
                input_values=wav_16, output_hidden_states=True
            ).hidden_states
            y_embeddings = (
                torch.stack(wav_embeddings, dim=1)
                .transpose(-1, -2)
                .flatten(start_dim=1, end_dim=2)
            )
        y_d_rs = self.wd(y_embeddings)
        return y_d_rs
 | 
