Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	| import argparse | |
| from multiprocessing import Pool, cpu_count | |
| import torch | |
| import torch.multiprocessing as mp | |
| from tqdm import tqdm | |
| import utils | |
| from config import config | |
| from clap_wrapper import get_clap_audio_feature | |
| import librosa | |
| import os | |
| os.environ["OMP_NUM_THREADS"] = "1" | |
| os.environ["MKL_NUM_THREADS"] = "1" | |
| def process_line(line): | |
| device = config.emo_gen_config.device | |
| if config.emo_gen_config.use_multi_device: | |
| rank = mp.current_process()._identity | |
| rank = rank[0] if len(rank) > 0 else 0 | |
| if torch.cuda.is_available(): | |
| gpu_id = rank % torch.cuda.device_count() | |
| device = torch.device(f"cuda:{gpu_id}") | |
| else: | |
| device = torch.device("cpu") | |
| wav_path, _, language_str, text, phones, tone, word2ph = line.strip().split("|") | |
| clap_path = wav_path.replace(".WAV", ".wav").replace(".wav", ".emo.npy") | |
| if os.path.isfile(clap_path): | |
| return | |
| audio = librosa.load(wav_path, 48000)[0] | |
| # audio = librosa.resample(audio, 44100, 48000) | |
| clap = get_clap_audio_feature(audio, device) | |
| torch.save(clap, clap_path) | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument( | |
| "-c", "--config", type=str, default=config.emo_gen_config.config_path | |
| ) | |
| parser.add_argument( | |
| "--num_processes", type=int, default=config.emo_gen_config.num_processes | |
| ) | |
| args, _ = parser.parse_known_args() | |
| config_path = args.config | |
| hps = utils.get_hparams_from_file(config_path) | |
| lines = [] | |
| with open(hps.data.training_files, encoding="utf-8") as f: | |
| lines.extend(f.readlines()) | |
| with open(hps.data.validation_files, encoding="utf-8") as f: | |
| lines.extend(f.readlines()) | |
| if len(lines) != 0: | |
| num_processes = min(args.num_processes, cpu_count()) | |
| with Pool(processes=num_processes) as pool: | |
| for _ in tqdm(pool.imap_unordered(process_line, lines), total=len(lines)): | |
| pass | |
| print(f"clap生成完毕!, 共有{len(lines)}个emo.pt生成!") | |
