Spaces:
Runtime error
Runtime error
| import argparse | |
| import os | |
| from pathlib import Path | |
| import logging | |
| import re_matching | |
| from flask import Flask, request, jsonify | |
| from flask_cors import CORS | |
| logging.getLogger("numba").setLevel(logging.WARNING) | |
| logging.getLogger("markdown_it").setLevel(logging.WARNING) | |
| logging.getLogger("urllib3").setLevel(logging.WARNING) | |
| logging.getLogger("matplotlib").setLevel(logging.WARNING) | |
| logging.basicConfig( | |
| level=logging.INFO, format="| %(name)s | %(levelname)s | %(message)s" | |
| ) | |
| logger = logging.getLogger(__name__) | |
| import librosa | |
| import numpy as np | |
| import torch | |
| import torch.nn as nn | |
| from torch.utils.data import Dataset | |
| from torch.utils.data import DataLoader, Dataset | |
| from tqdm import tqdm | |
| import utils | |
| from config import config | |
| import torch | |
| import commons | |
| from text import cleaned_text_to_sequence, get_bert | |
| from clap_wrapper import get_clap_audio_feature, get_clap_text_feature | |
| from text.cleaner import clean_text | |
| import utils | |
| from models import SynthesizerTrn | |
| from text.symbols import symbols | |
| import sys | |
| from scipy.io.wavfile import write | |
| net_g = None | |
| ''' | |
| device = ( | |
| "cuda:0" | |
| if torch.cuda.is_available() | |
| else ( | |
| "mps" | |
| if sys.platform == "darwin" and torch.backends.mps.is_available() | |
| else "cpu" | |
| ) | |
| ) | |
| ''' | |
| device = 'cpu' | |
| def get_net_g(model_path: str, device: str, hps): | |
| net_g = SynthesizerTrn( | |
| len(symbols), | |
| hps.data.filter_length // 2 + 1, | |
| hps.train.segment_size // hps.data.hop_length, | |
| n_speakers=hps.data.n_speakers, | |
| **hps.model, | |
| ).to(device) | |
| _ = net_g.eval() | |
| _ = utils.load_checkpoint(model_path, net_g, None, skip_optimizer=True) | |
| return net_g | |
| def get_text(text, language_str, hps, device): | |
| norm_text, phone, tone, word2ph = clean_text(text, language_str) | |
| phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str) | |
| #print(text) | |
| if hps.data.add_blank: | |
| phone = commons.intersperse(phone, 0) | |
| tone = commons.intersperse(tone, 0) | |
| language = commons.intersperse(language, 0) | |
| for i in range(len(word2ph)): | |
| word2ph[i] = word2ph[i] * 2 | |
| word2ph[0] += 1 | |
| bert_ori = get_bert(norm_text, word2ph, language_str, device) | |
| del word2ph | |
| assert bert_ori.shape[-1] == len(phone), phone | |
| if language_str == "ZH": | |
| bert = bert_ori | |
| ja_bert = torch.zeros(1024, len(phone)) | |
| en_bert = torch.zeros(1024, len(phone)) | |
| elif language_str == "JP": | |
| bert = torch.zeros(1024, len(phone)) | |
| ja_bert = bert_ori | |
| en_bert = torch.zeros(1024, len(phone)) | |
| else: | |
| raise ValueError("language_str should be ZH, JP or EN") | |
| assert bert.shape[-1] == len( | |
| phone | |
| ), f"Bert seq len {bert.shape[-1]} != {len(phone)}" | |
| phone = torch.LongTensor(phone) | |
| tone = torch.LongTensor(tone) | |
| language = torch.LongTensor(language) | |
| return bert, ja_bert, en_bert, phone, tone, language | |
| def infer( | |
| text, | |
| sdp_ratio, | |
| noise_scale, | |
| noise_scale_w, | |
| length_scale, | |
| sid, | |
| reference_audio=None, | |
| emotion='Happy', | |
| ): | |
| language= 'JP' if is_japanese(text) else 'ZH' | |
| if isinstance(reference_audio, np.ndarray): | |
| emo = get_clap_audio_feature(reference_audio, device) | |
| else: | |
| emo = get_clap_text_feature(emotion, device) | |
| emo = torch.squeeze(emo, dim=1) | |
| bert, ja_bert, en_bert, phones, tones, lang_ids = get_text( | |
| text, language, hps, device | |
| ) | |
| with torch.no_grad(): | |
| x_tst = phones.to(device).unsqueeze(0) | |
| tones = tones.to(device).unsqueeze(0) | |
| lang_ids = lang_ids.to(device).unsqueeze(0) | |
| bert = bert.to(device).unsqueeze(0) | |
| ja_bert = ja_bert.to(device).unsqueeze(0) | |
| en_bert = en_bert.to(device).unsqueeze(0) | |
| x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device) | |
| emo = emo.to(device).unsqueeze(0) | |
| del phones | |
| speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device) | |
| audio = ( | |
| net_g.infer( | |
| x_tst, | |
| x_tst_lengths, | |
| speakers, | |
| tones, | |
| lang_ids, | |
| bert, | |
| ja_bert, | |
| en_bert, | |
| emo, | |
| sdp_ratio=sdp_ratio, | |
| noise_scale=noise_scale, | |
| noise_scale_w=noise_scale_w, | |
| length_scale=length_scale, | |
| )[0][0, 0] | |
| .data.cpu() | |
| .float() | |
| .numpy() | |
| ) | |
| del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers, ja_bert, en_bert, emo | |
| if torch.cuda.is_available(): | |
| torch.cuda.empty_cache() | |
| write("temp.wav", 44100, audio) | |
| return 'success' | |
| def is_japanese(string): | |
| for ch in string: | |
| if ord(ch) > 0x3040 and ord(ch) < 0x30FF: | |
| return True | |
| return False | |
| def loadmodel(model): | |
| _ = net_g.eval() | |
| _ = utils.load_checkpoint(model, net_g, None, skip_optimizer=True) | |
| return "success" | |
| app = Flask(__name__) | |
| CORS(app) | |
| def tts(): | |
| # 这些没必要改 | |
| speaker = request.args.get('speaker') | |
| sdp_ratio = float(request.args.get('sdp_ratio', 0.2)) | |
| noise_scale = float(request.args.get('noise_scale', 0.6)) | |
| noise_scale_w = float(request.args.get('noise_scale_w', 0.8)) | |
| length_scale = float(request.args.get('length_scale', 1)) | |
| emotion = request.args.get('emotion', 'happy') | |
| text = request.args.get('text') | |
| status = infer(text, sdp_ratio=sdp_ratio, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale,sid = speaker, reference_audio=None, emotion=emotion) | |
| with open('temp.wav','rb') as bit: | |
| wav_bytes = bit.read() | |
| headers = { | |
| 'Content-Type': 'audio/wav', | |
| 'Text': status.encode('utf-8')} | |
| return wav_bytes, 200, headers | |
| if __name__ == "__main__": | |
| languages = [ "Auto", "ZH", "JP"] | |
| modelPaths = [] | |
| for dirpath, dirnames, filenames in os.walk("Data/BangDreamV22/models/"): | |
| for filename in filenames: | |
| modelPaths.append(os.path.join(dirpath, filename)) | |
| hps = utils.get_hparams_from_file('Data/BangDreamV22/configs/config.json') | |
| net_g = get_net_g( | |
| model_path="Data/BangDreamV22/models/G_75000.pth", device=device, hps=hps | |
| ) | |
| speaker_ids = hps.data.spk2id | |
| speakers = list(speaker_ids.keys()) | |
| app.run(host="0.0.0.0", port=5000) |