Spaces:
Runtime error
Runtime error
| import argparse | |
| import os | |
| from pathlib import Path | |
| import logging | |
| import re_matching | |
| logging.getLogger("numba").setLevel(logging.WARNING) | |
| logging.getLogger("markdown_it").setLevel(logging.WARNING) | |
| logging.getLogger("urllib3").setLevel(logging.WARNING) | |
| logging.getLogger("matplotlib").setLevel(logging.WARNING) | |
| logging.basicConfig( | |
| level=logging.INFO, format="| %(name)s | %(levelname)s | %(message)s" | |
| ) | |
| logger = logging.getLogger(__name__) | |
| import shutil | |
| from scipy.io.wavfile import write | |
| import librosa | |
| import numpy as np | |
| import torch | |
| import torch.nn as nn | |
| from torch.utils.data import Dataset | |
| from torch.utils.data import DataLoader, Dataset | |
| from tqdm import tqdm | |
| import gradio as gr | |
| import utils | |
| from config import config | |
| import torch | |
| import commons | |
| from text import cleaned_text_to_sequence, get_bert | |
| from text.cleaner import clean_text | |
| import utils | |
| from models import SynthesizerTrn | |
| from text.symbols import symbols | |
| import sys | |
| import re | |
| import random | |
| import hashlib | |
| from fugashi import Tagger | |
| import jaconv | |
| import unidic | |
| import subprocess | |
| import requests | |
| from ebooklib import epub | |
| import PyPDF2 | |
| from PyPDF2 import PdfReader | |
| from bs4 import BeautifulSoup | |
| import jieba | |
| import romajitable | |
| webBase = { | |
| 'pyopenjtalk-V2.3-Katakana': 'https://mahiruoshi-mygo-vits-bert.hf.space/', | |
| 'fugashi-V2.3-Katakana': 'https://mahiruoshi-mygo-vits-bert.hf.space/', | |
| } | |
| languages = [ "Auto", "ZH", "JP"] | |
| modelPaths = [] | |
| modes = ['pyopenjtalk-V2.3','fugashi-V2.3'] | |
| sentence_modes = ['sentence','paragraph'] | |
| net_g = None | |
| device = ( | |
| "cuda:0" | |
| if torch.cuda.is_available() | |
| else ( | |
| "mps" | |
| if sys.platform == "darwin" and torch.backends.mps.is_available() | |
| else "cpu" | |
| ) | |
| ) | |
| #device = "cpu" | |
| BandList = { | |
| "PoppinParty":["香澄","有咲","たえ","りみ","沙綾"], | |
| "Afterglow":["蘭","モカ","ひまり","巴","つぐみ"], | |
| "HelloHappyWorld":["こころ","美咲","薫","花音","はぐみ"], | |
| "PastelPalettes":["彩","日菜","千聖","イヴ","麻弥"], | |
| "Roselia":["友希那","紗夜","リサ","燐子","あこ"], | |
| "RaiseASuilen":["レイヤ","ロック","ますき","チュチュ","パレオ"], | |
| "Morfonica":["ましろ","瑠唯","つくし","七深","透子"], | |
| "MyGo":["燈","愛音","そよ","立希","楽奈"], | |
| "AveMujica":["祥子","睦","海鈴","にゃむ","初華"], | |
| "圣翔音乐学园":["華戀","光","香子","雙葉","真晝","純那","克洛迪娜","真矢","奈奈"], | |
| "凛明馆女子学校":["珠緒","壘","文","悠悠子","一愛"], | |
| "弗隆提亚艺术学校":["艾露","艾露露","菈樂菲","司","靜羽"], | |
| "西克菲尔特音乐学院":["晶","未知留","八千代","栞","美帆"] | |
| } | |
| #翻译 | |
| def translate(Sentence: str, to_Language: str = "jp", from_Language: str = ""): | |
| """ | |
| :param Sentence: 待翻译语句 | |
| :param from_Language: 待翻译语句语言 | |
| :param to_Language: 目标语言 | |
| :return: 翻译后语句 出错时返回None | |
| 常见语言代码:中文 zh 英语 en 日语 jp | |
| """ | |
| appid = "20231117001883321" | |
| key = "lMQbvZHeJveDceLof2wf" | |
| if appid == "" or key == "": | |
| return "请开发者在config.yml中配置app_key与secret_key" | |
| url = "https://fanyi-api.baidu.com/api/trans/vip/translate" | |
| texts = Sentence.splitlines() | |
| outTexts = [] | |
| for t in texts: | |
| if t != "": | |
| # 签名计算 参考文档 https://api.fanyi.baidu.com/product/113 | |
| salt = str(random.randint(1, 100000)) | |
| signString = appid + t + salt + key | |
| hs = hashlib.md5() | |
| hs.update(signString.encode("utf-8")) | |
| signString = hs.hexdigest() | |
| if from_Language == "": | |
| from_Language = "auto" | |
| headers = {"Content-Type": "application/x-www-form-urlencoded"} | |
| payload = { | |
| "q": t, | |
| "from": from_Language, | |
| "to": to_Language, | |
| "appid": appid, | |
| "salt": salt, | |
| "sign": signString, | |
| } | |
| # 发送请求 | |
| try: | |
| response = requests.post( | |
| url=url, data=payload, headers=headers, timeout=3 | |
| ) | |
| response = response.json() | |
| if "trans_result" in response.keys(): | |
| result = response["trans_result"][0] | |
| if "dst" in result.keys(): | |
| dst = result["dst"] | |
| outTexts.append(dst) | |
| except Exception: | |
| return Sentence | |
| else: | |
| outTexts.append(t) | |
| return "\n".join(outTexts) | |
| #文本清洗工具 | |
| def is_japanese(string): | |
| for ch in string: | |
| if ord(ch) > 0x3040 and ord(ch) < 0x30FF: | |
| return True | |
| return False | |
| def is_chinese(string): | |
| for ch in string: | |
| if '\u4e00' <= ch <= '\u9fff': | |
| return True | |
| return False | |
| def is_single_language(sentence): | |
| # 检查句子是否为单一语言 | |
| contains_chinese = re.search(r'[\u4e00-\u9fff]', sentence) is not None | |
| contains_japanese = re.search(r'[\u3040-\u30ff\u31f0-\u31ff]', sentence) is not None | |
| contains_english = re.search(r'[a-zA-Z]', sentence) is not None | |
| language_count = sum([contains_chinese, contains_japanese, contains_english]) | |
| return language_count == 1 | |
| def merge_scattered_parts(sentences): | |
| """合并零散的部分到相邻的句子中,并确保单一语言性""" | |
| merged_sentences = [] | |
| buffer_sentence = "" | |
| for sentence in sentences: | |
| # 检查是否是单一语言或者太短(可能是标点或单个词) | |
| if is_single_language(sentence) and len(sentence) > 1: | |
| # 如果缓冲区有内容,先将缓冲区的内容添加到列表 | |
| if buffer_sentence: | |
| merged_sentences.append(buffer_sentence) | |
| buffer_sentence = "" | |
| merged_sentences.append(sentence) | |
| else: | |
| # 如果是零散的部分,将其添加到缓冲区 | |
| buffer_sentence += sentence | |
| # 确保最后的缓冲区内容被添加 | |
| if buffer_sentence: | |
| merged_sentences.append(buffer_sentence) | |
| return merged_sentences | |
| def is_only_punctuation(s): | |
| """检查字符串是否只包含标点符号""" | |
| # 此处列出中文、日文、英文常见标点符号 | |
| punctuation_pattern = re.compile(r'^[\s。*;,:“”()、!?《》\u3000\.,;:"\'?!()]+$') | |
| return punctuation_pattern.match(s) is not None | |
| def split_mixed_language(sentence): | |
| # 分割混合语言句子 | |
| # 逐字符检查,分割不同语言部分 | |
| sub_sentences = [] | |
| current_language = None | |
| current_part = "" | |
| for char in sentence: | |
| if re.match(r'[\u4e00-\u9fff]', char): # Chinese character | |
| if current_language != 'chinese': | |
| if current_part: | |
| sub_sentences.append(current_part) | |
| current_part = char | |
| current_language = 'chinese' | |
| else: | |
| current_part += char | |
| elif re.match(r'[\u3040-\u30ff\u31f0-\u31ff]', char): # Japanese character | |
| if current_language != 'japanese': | |
| if current_part: | |
| sub_sentences.append(current_part) | |
| current_part = char | |
| current_language = 'japanese' | |
| else: | |
| current_part += char | |
| elif re.match(r'[a-zA-Z]', char): # English character | |
| if current_language != 'english': | |
| if current_part: | |
| sub_sentences.append(current_part) | |
| current_part = char | |
| current_language = 'english' | |
| else: | |
| current_part += char | |
| else: | |
| current_part += char # For punctuation and other characters | |
| if current_part: | |
| sub_sentences.append(current_part) | |
| return sub_sentences | |
| def replace_quotes(text): | |
| # 替换中文、日文引号为英文引号 | |
| text = re.sub(r'[“”‘’『』「」()()]', '"', text) | |
| return text | |
| def remove_numeric_annotations(text): | |
| # 定义用于匹配数字注释的正则表达式 | |
| # 包括 “”、【】和〔〕包裹的数字 | |
| pattern = r'“\d+”|【\d+】|〔\d+〕' | |
| # 使用正则表达式替换掉这些注释 | |
| cleaned_text = re.sub(pattern, '', text) | |
| return cleaned_text | |
| def merge_adjacent_japanese(sentences): | |
| """合并相邻且都只包含日语的句子""" | |
| merged_sentences = [] | |
| i = 0 | |
| while i < len(sentences): | |
| current_sentence = sentences[i] | |
| if i + 1 < len(sentences) and is_japanese(current_sentence) and is_japanese(sentences[i + 1]): | |
| # 当前句子和下一句都是日语,合并它们 | |
| while i + 1 < len(sentences) and is_japanese(sentences[i + 1]): | |
| current_sentence += sentences[i + 1] | |
| i += 1 | |
| merged_sentences.append(current_sentence) | |
| i += 1 | |
| return merged_sentences | |
| def extrac(text): | |
| text = replace_quotes(remove_numeric_annotations(text)) # 替换引号 | |
| text = re.sub("<[^>]*>", "", text) # 移除 HTML 标签 | |
| # 使用换行符和标点符号进行初步分割 | |
| preliminary_sentences = re.split(r'([\n。;!?\.\?!])', text) | |
| final_sentences = [] | |
| preliminary_sentences = re.split(r'([\n。;!?\.\?!])', text) | |
| for piece in preliminary_sentences: | |
| if is_single_language(piece): | |
| final_sentences.append(piece) | |
| else: | |
| sub_sentences = split_mixed_language(piece) | |
| final_sentences.extend(sub_sentences) | |
| # 处理长句子,使用jieba进行分词 | |
| split_sentences = [] | |
| for sentence in final_sentences: | |
| split_sentences.extend(split_long_sentences(sentence)) | |
| # 合并相邻的日语句子 | |
| merged_japanese_sentences = merge_adjacent_japanese(split_sentences) | |
| # 剔除只包含标点符号的元素 | |
| clean_sentences = [s for s in merged_japanese_sentences if not is_only_punctuation(s)] | |
| # 移除空字符串并去除多余引号 | |
| return [s.replace('"','').strip() for s in clean_sentences if s] | |
| # 移除空字符串 | |
| def is_mixed_language(sentence): | |
| contains_chinese = re.search(r'[\u4e00-\u9fff]', sentence) is not None | |
| contains_japanese = re.search(r'[\u3040-\u30ff\u31f0-\u31ff]', sentence) is not None | |
| contains_english = re.search(r'[a-zA-Z]', sentence) is not None | |
| languages_count = sum([contains_chinese, contains_japanese, contains_english]) | |
| return languages_count > 1 | |
| def split_mixed_language(sentence): | |
| # 分割混合语言句子 | |
| sub_sentences = re.split(r'(?<=[。!?\.\?!])(?=")|(?<=")(?=[\u4e00-\u9fff\u3040-\u30ff\u31f0-\u31ff]|[a-zA-Z])', sentence) | |
| return [s.strip() for s in sub_sentences if s.strip()] | |
| def seconds_to_ass_time(seconds): | |
| """将秒数转换为ASS时间格式""" | |
| hours = int(seconds / 3600) | |
| minutes = int((seconds % 3600) / 60) | |
| seconds = int(seconds) % 60 | |
| milliseconds = int((seconds - int(seconds)) * 1000) | |
| return "{:01d}:{:02d}:{:02d}.{:02d}".format(hours, minutes, seconds, int(milliseconds / 10)) | |
| def extract_text_from_epub(file_path): | |
| book = epub.read_epub(file_path) | |
| content = [] | |
| for item in book.items: | |
| if isinstance(item, epub.EpubHtml): | |
| soup = BeautifulSoup(item.content, 'html.parser') | |
| content.append(soup.get_text()) | |
| return '\n'.join(content) | |
| def extract_text_from_pdf(file_path): | |
| with open(file_path, 'rb') as file: | |
| reader = PdfReader(file) | |
| content = [page.extract_text() for page in reader.pages] | |
| return '\n'.join(content) | |
| def remove_annotations(text): | |
| # 移除方括号、尖括号和中文方括号中的内容 | |
| text = re.sub(r'\[.*?\]', '', text) | |
| text = re.sub(r'\<.*?\>', '', text) | |
| text = re.sub(r'​``【oaicite:1】``​', '', text) | |
| return text | |
| def extract_text_from_file(inputFile): | |
| file_extension = os.path.splitext(inputFile)[1].lower() | |
| if file_extension == ".epub": | |
| return extract_text_from_epub(inputFile) | |
| elif file_extension == ".pdf": | |
| return extract_text_from_pdf(inputFile) | |
| elif file_extension == ".txt": | |
| with open(inputFile, 'r', encoding='utf-8') as f: | |
| return f.read() | |
| else: | |
| raise ValueError(f"Unsupported file format: {file_extension}") | |
| def split_by_punctuation(sentence): | |
| """按照中文次级标点符号分割句子""" | |
| # 常见的中文次级分隔符号:逗号、分号等 | |
| parts = re.split(r'([,,;;])', sentence) | |
| # 将标点符号与前面的词语合并,避免单独标点符号成为一个部分 | |
| merged_parts = [] | |
| for part in parts: | |
| if part and not part in ',,;;': | |
| merged_parts.append(part) | |
| elif merged_parts: | |
| merged_parts[-1] += part | |
| return merged_parts | |
| def split_long_sentences(sentence, max_length=30): | |
| """如果中文句子太长,先按标点分割,必要时使用jieba进行分词并分割""" | |
| if len(sentence) > max_length and is_chinese(sentence): | |
| # 首先尝试按照次级标点符号分割 | |
| preliminary_parts = split_by_punctuation(sentence) | |
| new_sentences = [] | |
| for part in preliminary_parts: | |
| # 如果部分仍然太长,使用jieba进行分词 | |
| if len(part) > max_length: | |
| words = jieba.lcut(part) | |
| current_sentence = "" | |
| for word in words: | |
| if len(current_sentence) + len(word) > max_length: | |
| new_sentences.append(current_sentence) | |
| current_sentence = word | |
| else: | |
| current_sentence += word | |
| if current_sentence: | |
| new_sentences.append(current_sentence) | |
| else: | |
| new_sentences.append(part) | |
| return new_sentences | |
| return [sentence] # 如果句子不长或不是中文,直接返回 | |
| def extract_and_convert(text): | |
| # 使用正则表达式找出所有英文单词 | |
| english_parts = re.findall(r'\b[A-Za-z]+\b', text) # \b为单词边界标识 | |
| # 对每个英文单词进行片假名转换 | |
| kana_parts = ['\n{}\n'.format(romajitable.to_kana(word).katakana) for word in english_parts] | |
| # 替换原文本中的英文部分 | |
| for eng, kana in zip(english_parts, kana_parts): | |
| text = text.replace(eng, kana, 1) # 限制每次只替换一个实例 | |
| return text | |
| # 推理工具 | |
| def download_unidic(): | |
| try: | |
| Tagger() | |
| print("Tagger launch successfully.") | |
| except Exception as e: | |
| print("UNIDIC dictionary not found, downloading...") | |
| subprocess.run([sys.executable, "-m", "unidic", "download"]) | |
| print("Download completed.") | |
| def kanji_to_hiragana(text): | |
| global tagger | |
| output = "" | |
| # 更新正则表达式以更准确地区分文本和标点符号 | |
| segments = re.findall(r'[一-龥ぁ-んァ-ン\w]+|[^\一-龥ぁ-んァ-ン\w\s]', text, re.UNICODE) | |
| for segment in segments: | |
| if re.match(r'[一-龥ぁ-んァ-ン\w]+', segment): | |
| # 如果是单词或汉字,转换为平假名 | |
| for word in tagger(segment): | |
| kana = word.feature.kana or word.surface | |
| hiragana = jaconv.kata2hira(kana) # 将片假名转换为平假名 | |
| output += hiragana | |
| else: | |
| # 如果是标点符号,保持不变 | |
| output += segment | |
| return output | |
| def get_net_g(model_path: str, device: str, hps): | |
| net_g = SynthesizerTrn( | |
| len(symbols), | |
| hps.data.filter_length // 2 + 1, | |
| hps.train.segment_size // hps.data.hop_length, | |
| n_speakers=hps.data.n_speakers, | |
| **hps.model, | |
| ).to(device) | |
| _ = net_g.eval() | |
| _ = utils.load_checkpoint(model_path, net_g, None, skip_optimizer=True) | |
| return net_g | |
| def get_text(text, language_str, hps, device, style_text=None, style_weight=0.7): | |
| style_text = None if style_text == "" else style_text | |
| norm_text, phone, tone, word2ph = clean_text(text, language_str) | |
| phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str) | |
| if hps.data.add_blank: | |
| phone = commons.intersperse(phone, 0) | |
| tone = commons.intersperse(tone, 0) | |
| language = commons.intersperse(language, 0) | |
| for i in range(len(word2ph)): | |
| word2ph[i] = word2ph[i] * 2 | |
| word2ph[0] += 1 | |
| bert_ori = get_bert( | |
| norm_text, word2ph, language_str, device, style_text, style_weight | |
| ) | |
| del word2ph | |
| assert bert_ori.shape[-1] == len(phone), phone | |
| if language_str == "ZH": | |
| bert = bert_ori | |
| ja_bert = torch.randn(1024, len(phone)) | |
| en_bert = torch.randn(1024, len(phone)) | |
| elif language_str == "JP": | |
| bert = torch.randn(1024, len(phone)) | |
| ja_bert = bert_ori | |
| en_bert = torch.randn(1024, len(phone)) | |
| elif language_str == "EN": | |
| bert = torch.randn(1024, len(phone)) | |
| ja_bert = torch.randn(1024, len(phone)) | |
| en_bert = bert_ori | |
| else: | |
| raise ValueError("language_str should be ZH, JP or EN") | |
| assert bert.shape[-1] == len( | |
| phone | |
| ), f"Bert seq len {bert.shape[-1]} != {len(phone)}" | |
| phone = torch.LongTensor(phone) | |
| tone = torch.LongTensor(tone) | |
| language = torch.LongTensor(language) | |
| return bert, ja_bert, en_bert, phone, tone, language | |
| def infer( | |
| text, | |
| sdp_ratio, | |
| noise_scale, | |
| noise_scale_w, | |
| length_scale, | |
| sid, | |
| style_text=None, | |
| style_weight=0.7, | |
| language = "Auto", | |
| mode = 'pyopenjtalk-V2.3', | |
| skip_start=False, | |
| skip_end=False, | |
| ): | |
| if style_text == None: | |
| style_text = "" | |
| style_weight=0, | |
| if mode == 'fugashi-V2.3': | |
| text = kanji_to_hiragana(text) if is_japanese(text) else text | |
| if language == "JP": | |
| text = translate(text,"jp") | |
| if language == "ZH": | |
| text = translate(text,"zh") | |
| if language == "Auto": | |
| language= 'JP' if is_japanese(text) else 'ZH' | |
| #print(f'{text}:{sdp_ratio}:{noise_scale}:{noise_scale_w}:{length_scale}:{length_scale}:{sid}:{language}:{mode}:{skip_start}:{skip_end}') | |
| bert, ja_bert, en_bert, phones, tones, lang_ids = get_text( | |
| text, | |
| language, | |
| hps, | |
| device, | |
| style_text=style_text, | |
| style_weight=style_weight, | |
| ) | |
| if skip_start: | |
| phones = phones[3:] | |
| tones = tones[3:] | |
| lang_ids = lang_ids[3:] | |
| bert = bert[:, 3:] | |
| ja_bert = ja_bert[:, 3:] | |
| en_bert = en_bert[:, 3:] | |
| if skip_end: | |
| phones = phones[:-2] | |
| tones = tones[:-2] | |
| lang_ids = lang_ids[:-2] | |
| bert = bert[:, :-2] | |
| ja_bert = ja_bert[:, :-2] | |
| en_bert = en_bert[:, :-2] | |
| with torch.no_grad(): | |
| x_tst = phones.to(device).unsqueeze(0) | |
| tones = tones.to(device).unsqueeze(0) | |
| lang_ids = lang_ids.to(device).unsqueeze(0) | |
| bert = bert.to(device).unsqueeze(0) | |
| ja_bert = ja_bert.to(device).unsqueeze(0) | |
| en_bert = en_bert.to(device).unsqueeze(0) | |
| x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device) | |
| # emo = emo.to(device).unsqueeze(0) | |
| del phones | |
| speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device) | |
| audio = ( | |
| net_g.infer( | |
| x_tst, | |
| x_tst_lengths, | |
| speakers, | |
| tones, | |
| lang_ids, | |
| bert, | |
| ja_bert, | |
| en_bert, | |
| sdp_ratio=sdp_ratio, | |
| noise_scale=noise_scale, | |
| noise_scale_w=noise_scale_w, | |
| length_scale=length_scale, | |
| )[0][0, 0] | |
| .data.cpu() | |
| .float() | |
| .numpy() | |
| ) | |
| del ( | |
| x_tst, | |
| tones, | |
| lang_ids, | |
| bert, | |
| x_tst_lengths, | |
| speakers, | |
| ja_bert, | |
| en_bert, | |
| ) # , emo | |
| if torch.cuda.is_available(): | |
| torch.cuda.empty_cache() | |
| print("Success.") | |
| return audio | |
| def loadmodel(model): | |
| _ = net_g.eval() | |
| _ = utils.load_checkpoint(model, net_g, None, skip_optimizer=True) | |
| return "success" | |
| def generate_audio_and_srt_for_group( | |
| group, | |
| outputPath, | |
| group_index, | |
| sampling_rate, | |
| speaker, | |
| sdp_ratio, | |
| noise_scale, | |
| noise_scale_w, | |
| length_scale, | |
| speakerList, | |
| silenceTime, | |
| language, | |
| mode, | |
| skip_start, | |
| skip_end, | |
| style_text, | |
| style_weight, | |
| ): | |
| audio_fin = [] | |
| ass_entries = [] | |
| start_time = 0 | |
| #speaker = random.choice(cara_list) | |
| ass_header = """[Script Info] | |
| ; 我没意见 | |
| Title: Audiobook | |
| ScriptType: v4.00+ | |
| WrapStyle: 0 | |
| PlayResX: 640 | |
| PlayResY: 360 | |
| ScaledBorderAndShadow: yes | |
| [V4+ Styles] | |
| Format: Name, Fontname, Fontsize, PrimaryColour, SecondaryColour, OutlineColour, BackColour, Bold, Italic, Underline, StrikeOut, ScaleX, ScaleY, Spacing, Angle, BorderStyle, Outline, Shadow, Alignment, MarginL, MarginR, MarginV, Encoding | |
| Style: Default,Arial,20,&H00FFFFFF,&H000000FF,&H00000000,&H00000000,0,0,0,0,100,100,0,0,1,1,1,2,10,10,10,1 | |
| [Events] | |
| Format: Layer, Start, End, Style, Name, MarginL, MarginR, MarginV, Effect, Text | |
| """ | |
| for sentence in group: | |
| try: | |
| if len(sentence) > 1: | |
| FakeSpeaker = sentence.split("|")[0] | |
| print(FakeSpeaker) | |
| SpeakersList = re.split('\n', speakerList) | |
| if FakeSpeaker in list(hps.data.spk2id.keys()): | |
| speaker = FakeSpeaker | |
| for i in SpeakersList: | |
| if FakeSpeaker == i.split("|")[1]: | |
| speaker = i.split("|")[0] | |
| if sentence != '\n': | |
| text = (remove_annotations(sentence.split("|")[-1]).replace(" ","")+"。").replace(",。","。") | |
| if mode == 'pyopenjtalk-V2.3' or mode == 'fugashi-V2.3': | |
| #print(f'{text}:{sdp_ratio}:{noise_scale}:{noise_scale_w}:{length_scale}:{length_scale}:{speaker}:{language}:{mode}:{skip_start}:{skip_end}') | |
| audio = infer( | |
| text, | |
| sdp_ratio, | |
| noise_scale, | |
| noise_scale_w, | |
| length_scale, | |
| speaker, | |
| style_text, | |
| style_weight, | |
| language, | |
| mode, | |
| skip_start, | |
| skip_end, | |
| ) | |
| silence_frames = int(silenceTime * 44010) if is_chinese(sentence) else int(silenceTime * 44010) | |
| silence_data = np.zeros((silence_frames,), dtype=audio.dtype) | |
| audio_fin.append(audio) | |
| audio_fin.append(silence_data) | |
| duration = len(audio) / sampling_rate | |
| print(duration) | |
| end_time = start_time + duration + silenceTime | |
| ass_entries.append("Dialogue: 0,{},{},".format(seconds_to_ass_time(start_time), seconds_to_ass_time(end_time)) + "Default,,0,0,0,,{}".format(sentence.replace("|",":"))) | |
| start_time = end_time | |
| except: | |
| pass | |
| wav_filename = os.path.join(outputPath, f'audiobook_part_{group_index}.wav') | |
| ass_filename = os.path.join(outputPath, f'audiobook_part_{group_index}.ass') | |
| write(wav_filename, sampling_rate, gr.processing_utils.convert_to_16_bit_wav(np.concatenate(audio_fin))) | |
| with open(ass_filename, 'w', encoding='utf-8') as f: | |
| f.write(ass_header + '\n'.join(ass_entries)) | |
| return (hps.data.sampling_rate, gr.processing_utils.convert_to_16_bit_wav(np.concatenate(audio_fin))) | |
| def generate_audio( | |
| inputFile, | |
| groupSize, | |
| filepath, | |
| silenceTime, | |
| speakerList, | |
| text, | |
| sdp_ratio, | |
| noise_scale, | |
| noise_scale_w, | |
| length_scale, | |
| sid, | |
| style_text=None, | |
| style_weight=0.7, | |
| language = "Auto", | |
| mode = 'pyopenjtalk-V2.3', | |
| sentence_mode = 'sentence', | |
| skip_start=False, | |
| skip_end=False, | |
| ): | |
| if inputFile: | |
| text = extract_text_from_file(inputFile.name) | |
| sentence_mode = 'paragraph' | |
| if mode == 'pyopenjtalk-V2.3' or mode == 'fugashi-V2.3': | |
| if sentence_mode == 'sentence': | |
| audio = infer( | |
| text, | |
| sdp_ratio, | |
| noise_scale, | |
| noise_scale_w, | |
| length_scale, | |
| sid, | |
| style_text, | |
| style_weight, | |
| language, | |
| mode, | |
| skip_start, | |
| skip_end, | |
| ) | |
| return (hps.data.sampling_rate,gr.processing_utils.convert_to_16_bit_wav(audio)) | |
| if sentence_mode == 'paragraph': | |
| GROUP_SIZE = groupSize | |
| directory_path = filepath if torch.cuda.is_available() else "books" | |
| if os.path.exists(directory_path): | |
| shutil.rmtree(directory_path) | |
| os.makedirs(directory_path) | |
| if language == 'Auto': | |
| sentences = extrac(extract_and_convert(text)) | |
| else: | |
| sentences = extrac(text) | |
| for i in range(0, len(sentences), GROUP_SIZE): | |
| group = sentences[i:i+GROUP_SIZE] | |
| if speakerList == "": | |
| speakerList = "无" | |
| result = generate_audio_and_srt_for_group( | |
| group, | |
| directory_path, | |
| i//GROUP_SIZE + 1, | |
| 44100, | |
| sid, | |
| sdp_ratio, | |
| noise_scale, | |
| noise_scale_w, | |
| length_scale, | |
| speakerList, | |
| silenceTime, | |
| language, | |
| mode, | |
| skip_start, | |
| skip_end, | |
| style_text, | |
| style_weight, | |
| ) | |
| if not torch.cuda.is_available(): | |
| return result | |
| return result | |
| #url = f'{webBase[mode]}?text={text}&speaker={sid}&sdp_ratio={sdp_ratio}&noise_scale={noise_scale}&noise_scale_w={noise_scale_w}&length_scale={length_scale}&language={language}&skip_start={skip_start}&skip_end={skip_end}' | |
| #print(url) | |
| #res = requests.get(url) | |
| #改用post | |
| res = requests.post(webBase[mode], json = { | |
| "groupSize": groupSize, | |
| "filepath": filepath, | |
| "silenceTime": silenceTime, | |
| "speakerList": speakerList, | |
| "text": text, | |
| "speaker": sid, | |
| "sdp_ratio": sdp_ratio, | |
| "noise_scale": noise_scale, | |
| "noise_scale_w": noise_scale_w, | |
| "length_scale": length_scale, | |
| "language": language, | |
| "skip_start": skip_start, | |
| "skip_end": skip_end, | |
| "mode": mode, | |
| "sentence_mode": sentence_mode, | |
| "style_text": style_text, | |
| "style_weight": style_weight | |
| }) | |
| audio = res.content | |
| with open('output.wav', 'wb') as code: | |
| code.write(audio) | |
| file_path = "output.wav" | |
| return file_path | |
| if __name__ == "__main__": | |
| download_unidic() | |
| tagger = Tagger() | |
| for dirpath, dirnames, filenames in os.walk('Data/BangDream/models/'): | |
| for filename in filenames: | |
| modelPaths.append(os.path.join(dirpath, filename)) | |
| hps = utils.get_hparams_from_file('Data/BangDream/config.json') | |
| net_g = get_net_g( | |
| model_path=modelPaths[-1], device=device, hps=hps | |
| ) | |
| speaker_ids = hps.data.spk2id | |
| speakers = list(speaker_ids.keys()) | |
| with gr.Blocks() as app: | |
| gr.Markdown(value=""" | |
| ([Bert-Vits2](https://github.com/Stardust-minus/Bert-VITS2) V2.3)少歌邦邦全员在线语音合成\n | |
| [好玩的](http://love.soyorin.top/)\n | |
| 该界面的真实链接(国内可用): https://mahiruoshi-bangdream-bert-vits2.hf.space/\n | |
| API: https://mahiruoshi-bert-vits2-api.hf.space/ \n | |
| 调用方式: https://mahiruoshi-bert-vits2-api.hf.space/?text={{speakText}}&speaker=chosen_speaker\n | |
| 推荐搭配[Legado开源阅读](https://github.com/gedoor/legado)或[聊天bot](https://github.com/Paraworks/BangDreamAi)使用\n | |
| 二创请标注作者:B站@Mahiroshi: https://space.bilibili.com/19874615\n | |
| 训练数据集归属:BangDream及少歌手游,提取自BestDori,[数据集获取流程](https://nijigaku.top/2023/09/29/Bestbushiroad%E8%AE%A1%E5%88%92-vits-%E9%9F%B3%E9%A2%91%E6%8A%93%E5%8F%96%E5%8F%8A%E6%95%B0%E6%8D%AE%E9%9B%86%E5%AF%B9%E9%BD%90/)\n | |
| BangDream数据集下载[链接](https://huggingface.co/spaces/Mahiruoshi/BangDream-Bert-VITS2/blob/main/%E7%88%AC%E8%99%AB/SortPathUrl.txt)\n | |
| !!!注意:huggingface容器仅用作展示,建议在右上角更多选项中克隆本项目或Docker运行app.py/server.py,环境参考requirements.txt\n""") | |
| for band in BandList: | |
| with gr.TabItem(band): | |
| for name in BandList[band]: | |
| with gr.TabItem(name): | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Row(): | |
| gr.Markdown( | |
| '<div align="center">' | |
| f'<img style="width:auto;height:400px;" src="https://mahiruoshi-bangdream-bert-vits2.hf.space/file/image/{name}.png">' | |
| '</div>' | |
| ) | |
| with gr.Accordion(label="参数设定", open=False): | |
| sdp_ratio = gr.Slider( | |
| minimum=0, maximum=1, value=0.5, step=0.01, label="SDP/DP混合比" | |
| ) | |
| noise_scale = gr.Slider( | |
| minimum=0.1, maximum=2, value=0.6, step=0.01, label="Noise:感情调节" | |
| ) | |
| noise_scale_w = gr.Slider( | |
| minimum=0.1, maximum=2, value=0.667, step=0.01, label="Noise_W:音素长度" | |
| ) | |
| skip_start = gr.Checkbox(label="skip_start") | |
| skip_end = gr.Checkbox(label="skip_end") | |
| speaker = gr.Dropdown( | |
| choices=speakers, value=name, label="说话人" | |
| ) | |
| length_scale = gr.Slider( | |
| minimum=0.1, maximum=2, value=1, step=0.01, label="语速调节" | |
| ) | |
| language = gr.Dropdown( | |
| choices=languages, value="Auto", label="语言选择,若不选自动则会将输入语言翻译为日语或中文" | |
| ) | |
| mode = gr.Dropdown( | |
| choices=modes, value="pyopenjtalk-V2.3", label="TTS模式,合成少歌角色需要切换成 pyopenjtalk-V2.3-Katakana " | |
| ) | |
| sentence_mode = gr.Dropdown( | |
| choices=sentence_modes, value="paragraph", label="文本合成模式" | |
| ) | |
| with gr.Accordion(label="扩展选项", open=False): | |
| inputFile = gr.UploadButton(label="txt文件输入") | |
| speakerList = gr.TextArea( | |
| label="角色对应表,如果你记不住角色名可以这样,左边是你想要在每一句话合成中用到的speaker(见角色清单)右边是你上传文本时分隔符左边设置的说话人:{ChoseSpeakerFromConfigList}|{SeakerInUploadText}", | |
| value = "ましろ|真白\n七深|七深\n透子|透子\nつくし|筑紫\n瑠唯|瑠唯\nそよ|素世\n祥子|祥子", | |
| ) | |
| groupSize = gr.Slider( | |
| minimum=10, maximum=1000 if torch.cuda.is_available() else 50,value = 50, step=1, label="单个音频文件包含的最大句子数" | |
| ) | |
| filepath = gr.TextArea( | |
| label="本地合成时的音频存储文件夹(会清空文件夹,别把C盘删了)", | |
| value = "D:/audiobook/book1", | |
| ) | |
| silenceTime = gr.Slider( | |
| minimum=0, maximum=1, value=0.5, step=0.01, label="句子的间隔" | |
| ) | |
| modelstrs = gr.Dropdown(label = "模型", choices = modelPaths, value = modelPaths[0], type = "value") | |
| btnMod = gr.Button("载入模型") | |
| statusa = gr.TextArea(label = "模型加载状态") | |
| btnMod.click(loadmodel, inputs=[modelstrs], outputs = [statusa]) | |
| with gr.Column(): | |
| text = gr.TextArea( | |
| label="文本输入,可用'|'分割说话人和文本,注意换行", | |
| info="输入纯日语或者中文", | |
| #placeholder=f"{name}|你觉得你是职业歌手吗\n真白|我觉得我是", | |
| value=f"{name}|你觉得你是职业歌手吗\n真白|我觉得我是" | |
| ) | |
| style_text = gr.Textbox( | |
| label="情感辅助文本", | |
| info="语言保持跟主文本一致,文本可以参考训练集:https://huggingface.co/spaces/Mahiruoshi/BangDream-Bert-VITS2/blob/main/filelists/Mygo.list)", | |
| placeholder="使用辅助文本的语意来辅助生成对话(语言保持与主文本相同)\n\n" | |
| "**注意**:不要使用**指令式文本**(如:开心),要使用**带有强烈情感的文本**(如:我好快乐!!!)" | |
| ) | |
| style_weight = gr.Slider( | |
| minimum=0, | |
| maximum=1, | |
| value=0.7, | |
| step=0.1, | |
| label="Weight", | |
| info="主文本和辅助文本的bert混合比率,0表示仅主文本,1表示仅辅助文本", | |
| ) | |
| btn = gr.Button("点击生成", variant="primary") | |
| audio_output = gr.Audio(label="Output Audio") | |
| btntran = gr.Button("快速中翻日") | |
| translateResult = gr.TextArea(label="使用百度翻译",placeholder="从这里复制翻译后的文本") | |
| btntran.click(translate, inputs=[text], outputs = [translateResult]) | |
| btn.click( | |
| generate_audio, | |
| inputs=[ | |
| inputFile, | |
| groupSize, | |
| filepath, | |
| silenceTime, | |
| speakerList, | |
| text, | |
| sdp_ratio, | |
| noise_scale, | |
| noise_scale_w, | |
| length_scale, | |
| speaker, | |
| style_text, | |
| style_weight, | |
| language, | |
| mode, | |
| sentence_mode, | |
| skip_start, | |
| skip_end | |
| ], | |
| outputs=[audio_output], | |
| ) | |
| print("推理页面已开启!") | |
| app.launch() |