Spaces:
Runtime error
Runtime error
Commit
·
b60adb9
1
Parent(s):
6045186
Upload classify.py
Browse files- classify.py +180 -0
classify.py
ADDED
|
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from sklearn.cluster import *
|
| 2 |
+
import os
|
| 3 |
+
import numpy as np
|
| 4 |
+
from config import config
|
| 5 |
+
import yaml
|
| 6 |
+
import argparse
|
| 7 |
+
import shutil
|
| 8 |
+
|
| 9 |
+
def ensure_dir(directory):
|
| 10 |
+
if not os.path.exists(directory):
|
| 11 |
+
os.makedirs(directory)
|
| 12 |
+
|
| 13 |
+
if __name__ == "__main__":
|
| 14 |
+
parser = argparse.ArgumentParser()
|
| 15 |
+
parser.add_argument("-a", "--algorithm", default="k", help="choose algorithm", type=str)
|
| 16 |
+
parser.add_argument("-n", "--num_clusters", default=4, help="number of clusters", type=int)
|
| 17 |
+
parser.add_argument("-r", "--range", default=4, help="number of files in a class", type=int)
|
| 18 |
+
args = parser.parse_args()
|
| 19 |
+
|
| 20 |
+
filelist_dict = {}
|
| 21 |
+
yml_result = {}
|
| 22 |
+
base_dir = "D:/Vits2/Bert-VITS2/Data/BanGDream/filelists"
|
| 23 |
+
output_dir = "D:/Vits2/classifedSample"
|
| 24 |
+
|
| 25 |
+
with open(os.path.join(base_dir, "Mygo.list"), mode="r", encoding="utf-8") as f:
|
| 26 |
+
embs = []
|
| 27 |
+
wavnames = []
|
| 28 |
+
for line in f:
|
| 29 |
+
parts = line.strip().split("|")
|
| 30 |
+
speaker = parts[1] # 假设 speaker 是第二个部分
|
| 31 |
+
filepath = parts[0] # 假设 filepath 是第一个部分
|
| 32 |
+
# ... 其余部分可以根据需要使用
|
| 33 |
+
|
| 34 |
+
if speaker not in filelist_dict:
|
| 35 |
+
filelist_dict[speaker] = []
|
| 36 |
+
yml_result[speaker] = {}
|
| 37 |
+
filelist_dict[speaker].append(filepath)
|
| 38 |
+
|
| 39 |
+
for speaker in filelist_dict:
|
| 40 |
+
print("\nspeaker: " + speaker)
|
| 41 |
+
|
| 42 |
+
embs = []
|
| 43 |
+
wavnames = []
|
| 44 |
+
|
| 45 |
+
for file in filelist_dict[speaker]:
|
| 46 |
+
try:
|
| 47 |
+
embs.append(np.expand_dims(np.load(f"{os.path.splitext(file)[0]}.emo.npy"), axis=0))
|
| 48 |
+
wavnames.append(file)
|
| 49 |
+
except Exception as e:
|
| 50 |
+
print(e)
|
| 51 |
+
|
| 52 |
+
if embs:
|
| 53 |
+
n_clusters = args.num_clusters
|
| 54 |
+
x = np.concatenate(embs, axis=0)
|
| 55 |
+
x = np.squeeze(x)
|
| 56 |
+
|
| 57 |
+
if args.algorithm == "b":
|
| 58 |
+
model = Birch(n_clusters=n_clusters, threshold=0.2)
|
| 59 |
+
elif args.algorithm == "s":
|
| 60 |
+
model = SpectralClustering(n_clusters=n_clusters)
|
| 61 |
+
elif args.algorithm == "a":
|
| 62 |
+
model = AgglomerativeClustering(n_clusters=n_clusters)
|
| 63 |
+
else:
|
| 64 |
+
model = KMeans(n_clusters=n_clusters, random_state=10)
|
| 65 |
+
|
| 66 |
+
y_predict = model.fit_predict(x)
|
| 67 |
+
classes = [[] for i in range(y_predict.max() + 1)]
|
| 68 |
+
|
| 69 |
+
for idx, wavname in enumerate(wavnames):
|
| 70 |
+
classes[y_predict[idx]].append(wavname)
|
| 71 |
+
|
| 72 |
+
for i in range(y_predict.max() + 1):
|
| 73 |
+
print("类别:", i, "本类中样本数量:", len(classes[i]))
|
| 74 |
+
yml_result[speaker][f"class{i}"] = []
|
| 75 |
+
class_dir = os.path.join(output_dir, speaker, f"class{i}")
|
| 76 |
+
|
| 77 |
+
num_samples_in_class = len(classes[i])
|
| 78 |
+
for j in range(min(args.range, num_samples_in_class)):
|
| 79 |
+
wav_file = classes[i][j]
|
| 80 |
+
print(wav_file)
|
| 81 |
+
|
| 82 |
+
# 复制文件到新目录
|
| 83 |
+
ensure_dir(class_dir)
|
| 84 |
+
shutil.copy(os.path.join(base_dir, wav_file), os.path.join(class_dir, os.path.basename(wav_file)))
|
| 85 |
+
|
| 86 |
+
yml_result[speaker][f"class{i}"].append(wav_file)
|
| 87 |
+
|
| 88 |
+
with open(os.path.join(base_dir, "emo_clustering.yml"), "w", encoding="utf-8") as f:
|
| 89 |
+
yaml.dump(yml_result, f)
|
| 90 |
+
|
| 91 |
+
'''
|
| 92 |
+
from sklearn.cluster import *
|
| 93 |
+
import os
|
| 94 |
+
import numpy as np
|
| 95 |
+
from config import config
|
| 96 |
+
import yaml
|
| 97 |
+
import argparse
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
if __name__ == "__main__":
|
| 101 |
+
parser = argparse.ArgumentParser()
|
| 102 |
+
parser.add_argument(
|
| 103 |
+
"-a", "--algorithm", default="s", help="choose algorithm", type=str
|
| 104 |
+
)
|
| 105 |
+
parser.add_argument(
|
| 106 |
+
"-n", "--num_clusters", default=3, help="number of clusters", type=int
|
| 107 |
+
)
|
| 108 |
+
parser.add_argument(
|
| 109 |
+
"-r", "--range", default=4, help="number of files in a class", type=int
|
| 110 |
+
)
|
| 111 |
+
args = parser.parse_args()
|
| 112 |
+
filelist_dict = {}
|
| 113 |
+
yml_result = {}
|
| 114 |
+
with open(
|
| 115 |
+
"D:/Vits2/Bert-VITS2/Data/BanGDream/filelists/Mygo.list", mode="r", encoding="utf-8"
|
| 116 |
+
) as f:
|
| 117 |
+
embs = []
|
| 118 |
+
wavnames = []
|
| 119 |
+
for line in f:
|
| 120 |
+
speaker = line.split("|")[1]
|
| 121 |
+
if speaker not in filelist_dict:
|
| 122 |
+
filelist_dict[speaker] = []
|
| 123 |
+
yml_result[speaker] = {}
|
| 124 |
+
filelist_dict[speaker].append(line.split("|")[0])
|
| 125 |
+
#print(filelist_dict)
|
| 126 |
+
|
| 127 |
+
for speaker in filelist_dict:
|
| 128 |
+
print("\nspeaker: " + speaker)
|
| 129 |
+
|
| 130 |
+
# 清空 embs 和 wavnames 列表
|
| 131 |
+
embs = []
|
| 132 |
+
wavnames = []
|
| 133 |
+
|
| 134 |
+
for file in filelist_dict[speaker]:
|
| 135 |
+
try:
|
| 136 |
+
embs.append(
|
| 137 |
+
np.expand_dims(
|
| 138 |
+
np.load(f"{os.path.splitext(file)[0]}.emo.npy"), axis=0
|
| 139 |
+
)
|
| 140 |
+
)
|
| 141 |
+
wavnames.append(os.path.basename(file))
|
| 142 |
+
except Exception as e:
|
| 143 |
+
print(e)
|
| 144 |
+
|
| 145 |
+
if embs:
|
| 146 |
+
# 聚类算法类的数量
|
| 147 |
+
n_clusters = args.num_clusters
|
| 148 |
+
x = np.concatenate(embs, axis=0)
|
| 149 |
+
x = np.squeeze(x)
|
| 150 |
+
# 聚类算法类的数量
|
| 151 |
+
n_clusters = args.num_clusters
|
| 152 |
+
if args.algorithm == "b":
|
| 153 |
+
model = Birch(n_clusters=n_clusters, threshold=0.2)
|
| 154 |
+
elif args.algorithm == "s":
|
| 155 |
+
model = SpectralClustering(n_clusters=n_clusters)
|
| 156 |
+
elif args.algorithm == "a":
|
| 157 |
+
model = AgglomerativeClustering(n_clusters=n_clusters)
|
| 158 |
+
else:
|
| 159 |
+
model = KMeans(n_clusters=n_clusters, random_state=10)
|
| 160 |
+
# 可以自行尝试各种不同的聚类算法
|
| 161 |
+
y_predict = model.fit_predict(x)
|
| 162 |
+
classes = [[] for i in range(y_predict.max() + 1)]
|
| 163 |
+
|
| 164 |
+
for idx, wavname in enumerate(wavnames):
|
| 165 |
+
classes[y_predict[idx]].append(wavname)
|
| 166 |
+
|
| 167 |
+
for i in range(y_predict.max() + 1):
|
| 168 |
+
print("类别:", i, "本类中样本数量:", len(classes[i]))
|
| 169 |
+
yml_result[speaker][f"class{i}"] = []
|
| 170 |
+
|
| 171 |
+
# 修正:确保不会尝试访问超出范围的元素
|
| 172 |
+
num_samples_in_class = len(classes[i])
|
| 173 |
+
for j in range(min(args.range, num_samples_in_class)):
|
| 174 |
+
print(classes[i][j])
|
| 175 |
+
yml_result[speaker][f"class{i}"].append(classes[i][j])
|
| 176 |
+
with open(
|
| 177 |
+
os.path.join('D:/Vits2/Bert-VITS2/Data/BanGDream', "emo_clustering.yml"), "w", encoding="utf-8"
|
| 178 |
+
) as f:
|
| 179 |
+
yaml.dump(yml_result, f)
|
| 180 |
+
'''
|