Spaces:
Running
Running
| import argparse | |
| import glob | |
| import json | |
| import logging | |
| import os | |
| import re | |
| import subprocess | |
| import numpy as np | |
| import torch | |
| from huggingface_hub import hf_hub_download | |
| from safetensors import safe_open | |
| from safetensors.torch import save_file | |
| from scipy.io.wavfile import read | |
| from tools.log import logger | |
| MATPLOTLIB_FLAG = False | |
| def download_checkpoint( | |
| dir_path, repo_config, token=None, regex="G_*.pth", mirror="openi" | |
| ): | |
| repo_id = repo_config["repo_id"] | |
| f_list = glob.glob(os.path.join(dir_path, regex)) | |
| if f_list: | |
| print("Use existed model, skip downloading.") | |
| return | |
| for file in ["DUR_0.pth", "D_0.pth", "G_0.pth"]: | |
| hf_hub_download(repo_id, file, local_dir=dir_path, local_dir_use_symlinks=False) | |
| def load_checkpoint( | |
| checkpoint_path, model, optimizer=None, skip_optimizer=False, for_infer=False | |
| ): | |
| assert os.path.isfile(checkpoint_path) | |
| checkpoint_dict = torch.load(checkpoint_path, map_location="cpu") | |
| iteration = checkpoint_dict["iteration"] | |
| learning_rate = checkpoint_dict["learning_rate"] | |
| logger.info( | |
| f"Loading model and optimizer at iteration {iteration} from {checkpoint_path}" | |
| ) | |
| if ( | |
| optimizer is not None | |
| and not skip_optimizer | |
| and checkpoint_dict["optimizer"] is not None | |
| ): | |
| optimizer.load_state_dict(checkpoint_dict["optimizer"]) | |
| elif optimizer is None and not skip_optimizer: | |
| # else: Disable this line if Infer and resume checkpoint,then enable the line upper | |
| new_opt_dict = optimizer.state_dict() | |
| new_opt_dict_params = new_opt_dict["param_groups"][0]["params"] | |
| new_opt_dict["param_groups"] = checkpoint_dict["optimizer"]["param_groups"] | |
| new_opt_dict["param_groups"][0]["params"] = new_opt_dict_params | |
| optimizer.load_state_dict(new_opt_dict) | |
| saved_state_dict = checkpoint_dict["model"] | |
| if hasattr(model, "module"): | |
| state_dict = model.module.state_dict() | |
| else: | |
| state_dict = model.state_dict() | |
| new_state_dict = {} | |
| for k, v in state_dict.items(): | |
| try: | |
| # assert "emb_g" not in k | |
| new_state_dict[k] = saved_state_dict[k] | |
| assert saved_state_dict[k].shape == v.shape, ( | |
| saved_state_dict[k].shape, | |
| v.shape, | |
| ) | |
| except: | |
| # For upgrading from the old version | |
| if "ja_bert_proj" in k: | |
| v = torch.zeros_like(v) | |
| logger.warning( | |
| f"Seems you are using the old version of the model, the {k} is automatically set to zero for backward compatibility" | |
| ) | |
| elif "enc_q" in k and for_infer: | |
| continue | |
| else: | |
| logger.error(f"{k} is not in the checkpoint {checkpoint_path}") | |
| new_state_dict[k] = v | |
| if hasattr(model, "module"): | |
| model.module.load_state_dict(new_state_dict, strict=False) | |
| else: | |
| model.load_state_dict(new_state_dict, strict=False) | |
| logger.info("Loaded '{}' (iteration {})".format(checkpoint_path, iteration)) | |
| return model, optimizer, learning_rate, iteration | |
| def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path): | |
| logger.info( | |
| "Saving model and optimizer state at iteration {} to {}".format( | |
| iteration, checkpoint_path | |
| ) | |
| ) | |
| if hasattr(model, "module"): | |
| state_dict = model.module.state_dict() | |
| else: | |
| state_dict = model.state_dict() | |
| torch.save( | |
| { | |
| "model": state_dict, | |
| "iteration": iteration, | |
| "optimizer": optimizer.state_dict(), | |
| "learning_rate": learning_rate, | |
| }, | |
| checkpoint_path, | |
| ) | |
| def save_safetensors(model, iteration, checkpoint_path, is_half=False, for_infer=False): | |
| """ | |
| Save model with safetensors. | |
| """ | |
| if hasattr(model, "module"): | |
| state_dict = model.module.state_dict() | |
| else: | |
| state_dict = model.state_dict() | |
| keys = [] | |
| for k in state_dict: | |
| if "enc_q" in k and for_infer: | |
| continue # noqa: E701 | |
| keys.append(k) | |
| new_dict = ( | |
| {k: state_dict[k].half() for k in keys} | |
| if is_half | |
| else {k: state_dict[k] for k in keys} | |
| ) | |
| new_dict["iteration"] = torch.LongTensor([iteration]) | |
| logger.info(f"Saved safetensors to {checkpoint_path}") | |
| save_file(new_dict, checkpoint_path) | |
| def load_safetensors(checkpoint_path, model, for_infer=False): | |
| """ | |
| Load safetensors model. | |
| """ | |
| tensors = {} | |
| iteration = None | |
| with safe_open(checkpoint_path, framework="pt", device="cpu") as f: | |
| for key in f.keys(): | |
| if key == "iteration": | |
| iteration = f.get_tensor(key).item() | |
| tensors[key] = f.get_tensor(key) | |
| if hasattr(model, "module"): | |
| result = model.module.load_state_dict(tensors, strict=False) | |
| else: | |
| result = model.load_state_dict(tensors, strict=False) | |
| for key in result.missing_keys: | |
| if key.startswith("enc_q") and for_infer: | |
| continue | |
| logger.warning(f"Missing key: {key}") | |
| for key in result.unexpected_keys: | |
| if key == "iteration": | |
| continue | |
| logger.warning(f"Unexpected key: {key}") | |
| if iteration is None: | |
| logger.info(f"Loaded '{checkpoint_path}'") | |
| else: | |
| logger.info(f"Loaded '{checkpoint_path}' (iteration {iteration})") | |
| return model, iteration | |
| def summarize( | |
| writer, | |
| global_step, | |
| scalars={}, | |
| histograms={}, | |
| images={}, | |
| audios={}, | |
| audio_sampling_rate=22050, | |
| ): | |
| for k, v in scalars.items(): | |
| writer.add_scalar(k, v, global_step) | |
| for k, v in histograms.items(): | |
| writer.add_histogram(k, v, global_step) | |
| for k, v in images.items(): | |
| writer.add_image(k, v, global_step, dataformats="HWC") | |
| for k, v in audios.items(): | |
| writer.add_audio(k, v, global_step, audio_sampling_rate) | |
| def is_resuming(dir_path): | |
| g_list = glob.glob(os.path.join(dir_path, "G_*.pth")) | |
| d_list = glob.glob(os.path.join(dir_path, "D_*.pth")) | |
| dur_list = glob.glob(os.path.join(dir_path, "DUR_*.pth")) | |
| return len(g_list) > 0 and len(d_list) > 0 and len(dur_list) > 0 | |
| def latest_checkpoint_path(dir_path, regex="G_*.pth"): | |
| f_list = glob.glob(os.path.join(dir_path, regex)) | |
| f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f)))) | |
| try: | |
| x = f_list[-1] | |
| except IndexError: | |
| raise ValueError(f"No checkpoint found in {dir_path} with regex {regex}") | |
| return x | |
| def plot_spectrogram_to_numpy(spectrogram): | |
| global MATPLOTLIB_FLAG | |
| if not MATPLOTLIB_FLAG: | |
| import matplotlib | |
| matplotlib.use("Agg") | |
| MATPLOTLIB_FLAG = True | |
| mpl_logger = logging.getLogger("matplotlib") | |
| mpl_logger.setLevel(logging.WARNING) | |
| import matplotlib.pylab as plt | |
| import numpy as np | |
| fig, ax = plt.subplots(figsize=(10, 2)) | |
| im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none") | |
| plt.colorbar(im, ax=ax) | |
| plt.xlabel("Frames") | |
| plt.ylabel("Channels") | |
| plt.tight_layout() | |
| fig.canvas.draw() | |
| data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="") | |
| data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,)) | |
| plt.close() | |
| return data | |
| def plot_alignment_to_numpy(alignment, info=None): | |
| global MATPLOTLIB_FLAG | |
| if not MATPLOTLIB_FLAG: | |
| import matplotlib | |
| matplotlib.use("Agg") | |
| MATPLOTLIB_FLAG = True | |
| mpl_logger = logging.getLogger("matplotlib") | |
| mpl_logger.setLevel(logging.WARNING) | |
| import matplotlib.pylab as plt | |
| import numpy as np | |
| fig, ax = plt.subplots(figsize=(6, 4)) | |
| im = ax.imshow( | |
| alignment.transpose(), aspect="auto", origin="lower", interpolation="none" | |
| ) | |
| fig.colorbar(im, ax=ax) | |
| xlabel = "Decoder timestep" | |
| if info is not None: | |
| xlabel += "\n\n" + info | |
| plt.xlabel(xlabel) | |
| plt.ylabel("Encoder timestep") | |
| plt.tight_layout() | |
| fig.canvas.draw() | |
| data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="") | |
| data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,)) | |
| plt.close() | |
| return data | |
| def load_wav_to_torch(full_path): | |
| sampling_rate, data = read(full_path) | |
| return torch.FloatTensor(data.astype(np.float32)), sampling_rate | |
| def load_filepaths_and_text(filename, split="|"): | |
| with open(filename, encoding="utf-8") as f: | |
| filepaths_and_text = [line.strip().split(split) for line in f] | |
| return filepaths_and_text | |
| def get_hparams(init=True): | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument( | |
| "-c", | |
| "--config", | |
| type=str, | |
| default="./configs/base.json", | |
| help="JSON file for configuration", | |
| ) | |
| parser.add_argument("-m", "--model", type=str, required=True, help="Model name") | |
| args = parser.parse_args() | |
| model_dir = os.path.join("./logs", args.model) | |
| if not os.path.exists(model_dir): | |
| os.makedirs(model_dir) | |
| config_path = args.config | |
| config_save_path = os.path.join(model_dir, "config.json") | |
| if init: | |
| with open(config_path, "r", encoding="utf-8") as f: | |
| data = f.read() | |
| with open(config_save_path, "w", encoding="utf-8") as f: | |
| f.write(data) | |
| else: | |
| with open(config_save_path, "r", vencoding="utf-8") as f: | |
| data = f.read() | |
| config = json.loads(data) | |
| hparams = HParams(**config) | |
| hparams.model_dir = model_dir | |
| return hparams | |
| def clean_checkpoints(path_to_models="logs/44k/", n_ckpts_to_keep=2, sort_by_time=True): | |
| """Freeing up space by deleting saved ckpts | |
| Arguments: | |
| path_to_models -- Path to the model directory | |
| n_ckpts_to_keep -- Number of ckpts to keep, excluding G_0.pth and D_0.pth | |
| sort_by_time -- True -> chronologically delete ckpts | |
| False -> lexicographically delete ckpts | |
| """ | |
| import re | |
| ckpts_files = [ | |
| f | |
| for f in os.listdir(path_to_models) | |
| if os.path.isfile(os.path.join(path_to_models, f)) | |
| ] | |
| def name_key(_f): | |
| return int(re.compile("._(\\d+)\\.pth").match(_f).group(1)) | |
| def time_key(_f): | |
| return os.path.getmtime(os.path.join(path_to_models, _f)) | |
| sort_key = time_key if sort_by_time else name_key | |
| def x_sorted(_x): | |
| return sorted( | |
| [f for f in ckpts_files if f.startswith(_x) and not f.endswith("_0.pth")], | |
| key=sort_key, | |
| ) | |
| to_del = [ | |
| os.path.join(path_to_models, fn) | |
| for fn in ( | |
| x_sorted("G_")[:-n_ckpts_to_keep] | |
| + x_sorted("D_")[:-n_ckpts_to_keep] | |
| + x_sorted("WD_")[:-n_ckpts_to_keep] | |
| + x_sorted("DUR_")[:-n_ckpts_to_keep] | |
| ) | |
| ] | |
| def del_info(fn): | |
| return logger.info(f".. Free up space by deleting ckpt {fn}") | |
| def del_routine(x): | |
| return [os.remove(x), del_info(x)] | |
| [del_routine(fn) for fn in to_del] | |
| def get_hparams_from_dir(model_dir): | |
| config_save_path = os.path.join(model_dir, "config.json") | |
| with open(config_save_path, "r", encoding="utf-8") as f: | |
| data = f.read() | |
| config = json.loads(data) | |
| hparams = HParams(**config) | |
| hparams.model_dir = model_dir | |
| return hparams | |
| def get_hparams_from_file(config_path): | |
| # print("config_path: ", config_path) | |
| with open(config_path, "r", encoding="utf-8") as f: | |
| data = f.read() | |
| config = json.loads(data) | |
| hparams = HParams(**config) | |
| return hparams | |
| def check_git_hash(model_dir): | |
| source_dir = os.path.dirname(os.path.realpath(__file__)) | |
| if not os.path.exists(os.path.join(source_dir, ".git")): | |
| logger.warning( | |
| "{} is not a git repository, therefore hash value comparison will be ignored.".format( | |
| source_dir | |
| ) | |
| ) | |
| return | |
| cur_hash = subprocess.getoutput("git rev-parse HEAD") | |
| path = os.path.join(model_dir, "githash") | |
| if os.path.exists(path): | |
| saved_hash = open(path).read() | |
| if saved_hash != cur_hash: | |
| logger.warning( | |
| "git hash values are different. {}(saved) != {}(current)".format( | |
| saved_hash[:8], cur_hash[:8] | |
| ) | |
| ) | |
| else: | |
| open(path, "w").write(cur_hash) | |
| def get_logger(model_dir, filename="train.log"): | |
| global logger | |
| logger = logging.getLogger(os.path.basename(model_dir)) | |
| logger.setLevel(logging.DEBUG) | |
| formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s") | |
| if not os.path.exists(model_dir): | |
| os.makedirs(model_dir) | |
| h = logging.FileHandler(os.path.join(model_dir, filename)) | |
| h.setLevel(logging.DEBUG) | |
| h.setFormatter(formatter) | |
| logger.addHandler(h) | |
| return logger | |
| class HParams: | |
| def __init__(self, **kwargs): | |
| for k, v in kwargs.items(): | |
| if type(v) == dict: | |
| v = HParams(**v) | |
| self[k] = v | |
| def keys(self): | |
| return self.__dict__.keys() | |
| def items(self): | |
| return self.__dict__.items() | |
| def values(self): | |
| return self.__dict__.values() | |
| def __len__(self): | |
| return len(self.__dict__) | |
| def __getitem__(self, key): | |
| return getattr(self, key) | |
| def __setitem__(self, key, value): | |
| return setattr(self, key, value) | |
| def __contains__(self, key): | |
| return key in self.__dict__ | |
| def __repr__(self): | |
| return self.__dict__.__repr__() | |
| def load_model(model_path, config_path): | |
| hps = get_hparams_from_file(config_path) | |
| net = SynthesizerTrn( | |
| # len(symbols), | |
| 108, | |
| hps.data.filter_length // 2 + 1, | |
| hps.train.segment_size // hps.data.hop_length, | |
| n_speakers=hps.data.n_speakers, | |
| **hps.model, | |
| ).to("cpu") | |
| _ = net.eval() | |
| _ = load_checkpoint(model_path, net, None, skip_optimizer=True) | |
| return net | |
| def mix_model( | |
| network1, network2, output_path, voice_ratio=(0.5, 0.5), tone_ratio=(0.5, 0.5) | |
| ): | |
| if hasattr(network1, "module"): | |
| state_dict1 = network1.module.state_dict() | |
| state_dict2 = network2.module.state_dict() | |
| else: | |
| state_dict1 = network1.state_dict() | |
| state_dict2 = network2.state_dict() | |
| for k in state_dict1.keys(): | |
| if k not in state_dict2.keys(): | |
| continue | |
| if "enc_p" in k: | |
| state_dict1[k] = ( | |
| state_dict1[k].clone() * tone_ratio[0] | |
| + state_dict2[k].clone() * tone_ratio[1] | |
| ) | |
| else: | |
| state_dict1[k] = ( | |
| state_dict1[k].clone() * voice_ratio[0] | |
| + state_dict2[k].clone() * voice_ratio[1] | |
| ) | |
| for k in state_dict2.keys(): | |
| if k not in state_dict1.keys(): | |
| state_dict1[k] = state_dict2[k].clone() | |
| torch.save( | |
| {"model": state_dict1, "iteration": 0, "optimizer": None, "learning_rate": 0}, | |
| output_path, | |
| ) | |
| def get_steps(model_path): | |
| matches = re.findall(r"\d+", model_path) | |
| return matches[-1] if matches else None | |