MansoorSarookh commited on
Commit
b96dcbe
Β·
verified Β·
1 Parent(s): 6027f43

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -9
app.py CHANGED
@@ -1,16 +1,15 @@
1
- import os
2
  import streamlit as st
3
  from sentence_transformers import SentenceTransformer
4
- from langchain_text_splitters import RecursiveCharacterTextSplitter
5
  from langchain.vectorstores import FAISS
6
  from transformers import pipeline
7
  from datasets import load_dataset
8
  import torch
9
 
10
- # Set up the page configuration as the first Streamlit command
11
- st.set_page_config(page_title="RAG-based Document Chat", layout="centered", page_icon="πŸ“„")
12
 
13
- # Load the summarization pipeline model
14
  @st.cache_resource
15
  def load_summarization_pipeline():
16
  summarizer = pipeline("summarization", model="facebook/bart-large-cnn") # Use a summarization model
@@ -33,14 +32,18 @@ def get_text_chunks(text):
33
  return chunks
34
 
35
  # Initialize embedding model
36
- embedding_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
 
 
 
 
 
37
 
38
  # Create a FAISS vector store with embeddings
39
  @st.cache_resource
40
  def load_or_create_vector_store(text_chunks):
41
- def embedding_function(text):
42
- return embedding_model.encode(text)
43
- vector_store = FAISS.from_texts(text_chunks, embedding=embedding_function)
44
  return vector_store
45
 
46
  # Generate summary based on the retrieved text
 
 
1
  import streamlit as st
2
  from sentence_transformers import SentenceTransformer
3
+ from langchain.text_splitters import RecursiveCharacterTextSplitter
4
  from langchain.vectorstores import FAISS
5
  from transformers import pipeline
6
  from datasets import load_dataset
7
  import torch
8
 
9
+ # Set up the Streamlit page configuration
10
+ st.set_page_config(page_title="Gen AI Lawyers Guide", layout="centered", page_icon="πŸ“„")
11
 
12
+ # Load summarization pipeline model
13
  @st.cache_resource
14
  def load_summarization_pipeline():
15
  summarizer = pipeline("summarization", model="facebook/bart-large-cnn") # Use a summarization model
 
32
  return chunks
33
 
34
  # Initialize embedding model
35
+ @st.cache_resource
36
+ def load_embedding_model():
37
+ model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
38
+ return model
39
+
40
+ embedding_model = load_embedding_model()
41
 
42
  # Create a FAISS vector store with embeddings
43
  @st.cache_resource
44
  def load_or_create_vector_store(text_chunks):
45
+ embeddings = [embedding_model.encode(text) for text in text_chunks]
46
+ vector_store = FAISS.from_embeddings(embeddings, text_chunks) # FAISS setup with embeddings
 
47
  return vector_store
48
 
49
  # Generate summary based on the retrieved text