Spaces:
Sleeping
Sleeping
Upload 12 files
Browse files- Dockerfile +17 -0
- README.md +0 -10
- cura/__init__.py +0 -0
- cura/github_ingestion.py +46 -0
- cura/openai_chat.py +22 -0
- cura/vector_store.py +79 -0
- cura_alpha.ipynb +347 -0
- database/__init__.py +34 -0
- index.py +62 -0
- langgraph_code_assistant.ipynb +0 -0
- requirements.txt +6 -0
- test_index.py +31 -0
Dockerfile
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Use an official fastapi runtime as a parent image
|
2 |
+
FROM tiangolo/uvicorn-gunicorn-fastapi:python3.8
|
3 |
+
|
4 |
+
# Set the working directory in the container
|
5 |
+
WORKDIR /app
|
6 |
+
|
7 |
+
# Copy the current directory contents into the container at /app
|
8 |
+
COPY . /app
|
9 |
+
|
10 |
+
# Install any needed packages specified in requirements.txt
|
11 |
+
RUN pip install --trusted-host pypi.python.org -r requirements.txt
|
12 |
+
|
13 |
+
# Make port 80 available to the world outside this container
|
14 |
+
EXPOSE 80
|
15 |
+
|
16 |
+
# Run index.py when the container launches
|
17 |
+
CMD ["uvicorn", "index:app", "--port", "80", "--reload"]
|
README.md
CHANGED
@@ -1,11 +1 @@
|
|
1 |
-
---
|
2 |
-
title: Mindify Chat Api Demo
|
3 |
-
emoji: 🦀
|
4 |
-
colorFrom: gray
|
5 |
-
colorTo: gray
|
6 |
-
sdk: docker
|
7 |
-
pinned: false
|
8 |
-
license: mit
|
9 |
-
---
|
10 |
|
11 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
cura/__init__.py
ADDED
File without changes
|
cura/github_ingestion.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
"""
|
3 |
+
GitHub Repo File Ingestion and Indexing
|
4 |
+
"""
|
5 |
+
|
6 |
+
from langchain_community.document_loaders.github import GithubFileLoader
|
7 |
+
from tqdm import tqdm
|
8 |
+
|
9 |
+
def ingest_github_repo(repo_name: str, access_token: str):
|
10 |
+
"""
|
11 |
+
Ingests files from a GitHub repository and returns the files as a list of strings.
|
12 |
+
|
13 |
+
Args:
|
14 |
+
repo_name: str
|
15 |
+
The name of the GitHub repository in the format "username/repo_name".
|
16 |
+
access_token: str
|
17 |
+
The GitHub access token to access the repository.
|
18 |
+
|
19 |
+
Returns:
|
20 |
+
list
|
21 |
+
A list of strings containing the contents of the files in the repository.
|
22 |
+
"""
|
23 |
+
loader = GithubFileLoader(
|
24 |
+
repo=repo_name,
|
25 |
+
access_token=access_token,
|
26 |
+
)
|
27 |
+
|
28 |
+
# List the directory contents for the repository
|
29 |
+
file_paths = loader.get_file_paths()
|
30 |
+
|
31 |
+
# Load the files from the repository using curl
|
32 |
+
files = []
|
33 |
+
|
34 |
+
print("Ingesting files from the repository...")
|
35 |
+
for i in tqdm(range(len(file_paths))):
|
36 |
+
try:
|
37 |
+
file = loader.get_file_content_by_path(file_paths[i]["path"])
|
38 |
+
# If the file is not textual file, skip it
|
39 |
+
if file is None:
|
40 |
+
continue
|
41 |
+
else:
|
42 |
+
files.append(file)
|
43 |
+
except:
|
44 |
+
continue
|
45 |
+
|
46 |
+
return files, file_paths
|
cura/openai_chat.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain_openai import ChatOpenAI
|
2 |
+
import os
|
3 |
+
|
4 |
+
def ask_question(message: str) -> str:
|
5 |
+
llm = ChatOpenAI(
|
6 |
+
model="gpt-4o",
|
7 |
+
temperature=0,
|
8 |
+
max_tokens=None,
|
9 |
+
timeout=None,
|
10 |
+
max_retries=2,
|
11 |
+
api_key=os.getenv("OPENAI_API_KEY"),
|
12 |
+
# api_key="...", # if you prefer to pass api key in directly instaed of using env vars
|
13 |
+
# base_url="...",
|
14 |
+
# organization="...",
|
15 |
+
# other params...
|
16 |
+
)
|
17 |
+
|
18 |
+
try:
|
19 |
+
response = llm.invoke(message)
|
20 |
+
return response
|
21 |
+
except:
|
22 |
+
print("Error in openai_chat.py")
|
cura/vector_store.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
"""
|
3 |
+
Vector Store for Mindify Chat
|
4 |
+
"""
|
5 |
+
|
6 |
+
import chromadb
|
7 |
+
|
8 |
+
def set_up_chromadb(collection_name: str):
|
9 |
+
"""
|
10 |
+
Set up a ChromaDB collection for storing vectors.
|
11 |
+
|
12 |
+
Args:
|
13 |
+
collection_name: str
|
14 |
+
The name of the collection to create or retrieve.
|
15 |
+
|
16 |
+
Returns:
|
17 |
+
ChromaDB Collection
|
18 |
+
The ChromaDB collection object.
|
19 |
+
"""
|
20 |
+
chroma_client = chromadb.Client()
|
21 |
+
|
22 |
+
try:
|
23 |
+
# Check if the collection already exists
|
24 |
+
collection = chroma_client.get_collection(name=collection_name)
|
25 |
+
return collection
|
26 |
+
except:
|
27 |
+
# Create a new collection
|
28 |
+
collection = chroma_client.create_collection(name=collection_name)
|
29 |
+
return collection
|
30 |
+
|
31 |
+
|
32 |
+
def index_vector_store(collection_name:str, files: list):
|
33 |
+
"""
|
34 |
+
Index the files in the ChromaDB collection.
|
35 |
+
|
36 |
+
Args:
|
37 |
+
collection: ChromaDB Collection
|
38 |
+
The collection to store the vectors in.
|
39 |
+
files: list
|
40 |
+
A list of strings containing the contents of the files.
|
41 |
+
|
42 |
+
Returns:
|
43 |
+
bool
|
44 |
+
True if the data is stored successfully, False otherwise.
|
45 |
+
"""
|
46 |
+
# Set up collection
|
47 |
+
try:
|
48 |
+
collection = chromadb.Client().get_collection(name=collection_name)
|
49 |
+
except:
|
50 |
+
collection = chromadb.Client().create_collection(name=collection_name)
|
51 |
+
|
52 |
+
print("Indexing files...")
|
53 |
+
ids = []
|
54 |
+
for i in range(len(files[0])):
|
55 |
+
ids.append(str(i))
|
56 |
+
|
57 |
+
print("Storing GitHub data in ChromaDB...")
|
58 |
+
try:
|
59 |
+
collection.add(ids=ids, documents=files[0])
|
60 |
+
print("Data stored successfully!")
|
61 |
+
|
62 |
+
return True
|
63 |
+
except:
|
64 |
+
print("Error storing data in ChromaDB")
|
65 |
+
return False
|
66 |
+
|
67 |
+
def query_vector_store(collection_name: str, query: str):
|
68 |
+
"""
|
69 |
+
Query the ChromaDB collection for similar vectors to the query vector.
|
70 |
+
"""
|
71 |
+
print("Querying ChromaDB...")
|
72 |
+
try:
|
73 |
+
list_collection = chromadb.Client().list_collections()
|
74 |
+
print(list_collection)
|
75 |
+
collection = chromadb.Client().get_collection(name=collection_name)
|
76 |
+
return collection.query(query_texts=query, n_results=5)
|
77 |
+
except:
|
78 |
+
print("Error querying ChromaDB")
|
79 |
+
return None
|
cura_alpha.ipynb
ADDED
@@ -0,0 +1,347 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 2,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [
|
8 |
+
{
|
9 |
+
"name": "stdout",
|
10 |
+
"output_type": "stream",
|
11 |
+
"text": [
|
12 |
+
"Ingesting GitHub data, please input the following information:\n",
|
13 |
+
"Ingesting GitHub data...\n",
|
14 |
+
"Ingesting files from the repository...\n"
|
15 |
+
]
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"name": "stderr",
|
19 |
+
"output_type": "stream",
|
20 |
+
"text": [
|
21 |
+
"100%|██████████| 75/75 [00:43<00:00, 1.73it/s]\n"
|
22 |
+
]
|
23 |
+
}
|
24 |
+
],
|
25 |
+
"source": [
|
26 |
+
"from cura import github_ingestion\n",
|
27 |
+
"from cura import vector_store\n",
|
28 |
+
"\n",
|
29 |
+
"print(\"Ingesting GitHub data, please input the following information:\")\n",
|
30 |
+
"url = \"MarkCodering/mindify-website\"\n",
|
31 |
+
"access_token = input(\"GitHub Access Token: \")\n",
|
32 |
+
"\n",
|
33 |
+
"print(\"Ingesting GitHub data...\")\n",
|
34 |
+
"github_repo_data = github_ingestion.ingest_github_repo(url, access_token)"
|
35 |
+
]
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"cell_type": "code",
|
39 |
+
"execution_count": 3,
|
40 |
+
"metadata": {},
|
41 |
+
"outputs": [
|
42 |
+
{
|
43 |
+
"name": "stdout",
|
44 |
+
"output_type": "stream",
|
45 |
+
"text": [
|
46 |
+
"Storing GitHub data in ChromaDB...\n"
|
47 |
+
]
|
48 |
+
}
|
49 |
+
],
|
50 |
+
"source": [
|
51 |
+
"collection_name = url.replace(\"/\", \"_\")\n",
|
52 |
+
"collection = vector_store.set_up_chromadb(collection_name)\n",
|
53 |
+
"ids = []\n",
|
54 |
+
"for i in range(len(github_repo_data[0])):\n",
|
55 |
+
" ids.append(str(i))\n",
|
56 |
+
" \n",
|
57 |
+
"print(\"Storing GitHub data in ChromaDB...\")\n",
|
58 |
+
"collection.add(ids=ids, documents=github_repo_data[0])"
|
59 |
+
]
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"cell_type": "code",
|
63 |
+
"execution_count": 4,
|
64 |
+
"metadata": {},
|
65 |
+
"outputs": [
|
66 |
+
{
|
67 |
+
"name": "stdout",
|
68 |
+
"output_type": "stream",
|
69 |
+
"text": [
|
70 |
+
"Querying the data from the vector store...\n",
|
71 |
+
"---\n",
|
72 |
+
"// @ts-ignore\n",
|
73 |
+
"const features = [\n",
|
74 |
+
" {\n",
|
75 |
+
" title: \"Learn AI Technologies\",\n",
|
76 |
+
" description:\n",
|
77 |
+
" \"We provide online and in-person training to help you learn the latest generative AI technologies.\",\n",
|
78 |
+
" },\n",
|
79 |
+
" {\n",
|
80 |
+
" title: \"Deploy AI Solutions\",\n",
|
81 |
+
" description:\n",
|
82 |
+
" \"We provide a platform for developers to deploy generative AI solutions in their projects.\",\n",
|
83 |
+
" },\n",
|
84 |
+
" {\n",
|
85 |
+
" title: \"Fast Prototyping and Concept Validation\",\n",
|
86 |
+
" description:\n",
|
87 |
+
" \"We help you quickly prototype and validate your AI concepts to bring them to market faster.\",\n",
|
88 |
+
" },\n",
|
89 |
+
"];\n",
|
90 |
+
"---\n",
|
91 |
+
"\n",
|
92 |
+
"<div class=\"mt-16 md:mt-0\">\n",
|
93 |
+
" <h2 class=\"text-4xl lg:text-5xl font-bold lg:tracking-tight text-center\">\n",
|
94 |
+
" About Mindify AI\n",
|
95 |
+
" </h2>\n",
|
96 |
+
" <p class=\"text-lg mt-4 text-slate-600\">\n",
|
97 |
+
" Mindify is an AI solution company that provides a platform for developers to\n",
|
98 |
+
" learn and deploy generative AI solutions. We deliver online and in-person\n",
|
99 |
+
" training to help you learn the latest AI technologies and deploy them in\n",
|
100 |
+
" your projects. Our mission is to help you bring your AI concepts to market\n",
|
101 |
+
" faster and deliver value to your customers.\n",
|
102 |
+
" </p>\n",
|
103 |
+
"</div>\n",
|
104 |
+
"\n",
|
105 |
+
"<div class=\"grid sm:grid-cols-2 md:grid-cols-3 mt-16 gap-16\">\n",
|
106 |
+
" {\n",
|
107 |
+
" features.map((item) => (\n",
|
108 |
+
" <div class=\"flex gap-4 items-start\">\n",
|
109 |
+
" <div>\n",
|
110 |
+
" <h3 class=\"font-semibold text-lg\">{item.title}</h3>{\" \"}\n",
|
111 |
+
" <p class=\"text-slate-500 mt-2 leading-relaxed\">{item.description}</p>\n",
|
112 |
+
" </div>\n",
|
113 |
+
" </div>\n",
|
114 |
+
" ))\n",
|
115 |
+
" }\n",
|
116 |
+
"</div>\n",
|
117 |
+
"\n"
|
118 |
+
]
|
119 |
+
}
|
120 |
+
],
|
121 |
+
"source": [
|
122 |
+
"# Query the data from the vector store\n",
|
123 |
+
"print(\"Querying the data from the vector store...\")\n",
|
124 |
+
"prompt = \"What is Mindify AI?\"\n",
|
125 |
+
"results = collection.query(\n",
|
126 |
+
" query_texts=[prompt], # Chroma will embed this for you\n",
|
127 |
+
" n_results=2 # how many results to return\n",
|
128 |
+
")\n",
|
129 |
+
"print(results[\"documents\"][0][0])"
|
130 |
+
]
|
131 |
+
},
|
132 |
+
{
|
133 |
+
"cell_type": "code",
|
134 |
+
"execution_count": 5,
|
135 |
+
"metadata": {},
|
136 |
+
"outputs": [
|
137 |
+
{
|
138 |
+
"name": "stdout",
|
139 |
+
"output_type": "stream",
|
140 |
+
"text": [
|
141 |
+
"Asking OpenAI the following question: You are a smart and helpful AI programmer and here is the repository I am working on: MarkCodering/mindify-websiteAnd, I wonder if you can help me with the following question with the following question: What is Mindify AI?based on the data in the repository which is available here: ---\n",
|
142 |
+
"// @ts-ignore\n",
|
143 |
+
"const features = [\n",
|
144 |
+
" {\n",
|
145 |
+
" title: \"Learn AI Technologies\",\n",
|
146 |
+
" description:\n",
|
147 |
+
" \"We provide online and in-person training to help you learn the latest generative AI technologies.\",\n",
|
148 |
+
" },\n",
|
149 |
+
" {\n",
|
150 |
+
" title: \"Deploy AI Solutions\",\n",
|
151 |
+
" description:\n",
|
152 |
+
" \"We provide a platform for developers to deploy generative AI solutions in their projects.\",\n",
|
153 |
+
" },\n",
|
154 |
+
" {\n",
|
155 |
+
" title: \"Fast Prototyping and Concept Validation\",\n",
|
156 |
+
" description:\n",
|
157 |
+
" \"We help you quickly prototype and validate your AI concepts to bring them to market faster.\",\n",
|
158 |
+
" },\n",
|
159 |
+
"];\n",
|
160 |
+
"---\n",
|
161 |
+
"\n",
|
162 |
+
"<div class=\"mt-16 md:mt-0\">\n",
|
163 |
+
" <h2 class=\"text-4xl lg:text-5xl font-bold lg:tracking-tight text-center\">\n",
|
164 |
+
" About Mindify AI\n",
|
165 |
+
" </h2>\n",
|
166 |
+
" <p class=\"text-lg mt-4 text-slate-600\">\n",
|
167 |
+
" Mindify is an AI solution company that provides a platform for developers to\n",
|
168 |
+
" learn and deploy generative AI solutions. We deliver online and in-person\n",
|
169 |
+
" training to help you learn the latest AI technologies and deploy them in\n",
|
170 |
+
" your projects. Our mission is to help you bring your AI concepts to market\n",
|
171 |
+
" faster and deliver value to your customers.\n",
|
172 |
+
" </p>\n",
|
173 |
+
"</div>\n",
|
174 |
+
"\n",
|
175 |
+
"<div class=\"grid sm:grid-cols-2 md:grid-cols-3 mt-16 gap-16\">\n",
|
176 |
+
" {\n",
|
177 |
+
" features.map((item) => (\n",
|
178 |
+
" <div class=\"flex gap-4 items-start\">\n",
|
179 |
+
" <div>\n",
|
180 |
+
" <h3 class=\"font-semibold text-lg\">{item.title}</h3>{\" \"}\n",
|
181 |
+
" <p class=\"text-slate-500 mt-2 leading-relaxed\">{item.description}</p>\n",
|
182 |
+
" </div>\n",
|
183 |
+
" </div>\n",
|
184 |
+
" ))\n",
|
185 |
+
" }\n",
|
186 |
+
"</div>\n",
|
187 |
+
"\n"
|
188 |
+
]
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"name": "stderr",
|
192 |
+
"output_type": "stream",
|
193 |
+
"text": [
|
194 |
+
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
|
195 |
+
"To disable this warning, you can either:\n",
|
196 |
+
"\t- Avoid using `tokenizers` before the fork if possible\n",
|
197 |
+
"\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n"
|
198 |
+
]
|
199 |
+
}
|
200 |
+
],
|
201 |
+
"source": [
|
202 |
+
"from cura import openai_chat\n",
|
203 |
+
"\n",
|
204 |
+
"question = (\n",
|
205 |
+
" \"You are a smart and helpful AI programmer and here is the repository I am working on: {}\".format(\n",
|
206 |
+
" url\n",
|
207 |
+
" )\n",
|
208 |
+
" + \"And, I wonder if you can help me with the following question with the following question: {}\".format(\n",
|
209 |
+
" prompt\n",
|
210 |
+
" )\n",
|
211 |
+
" + \"based on the data in the repository which is available here: {}\".format(\n",
|
212 |
+
" results[\"documents\"][0][0]\n",
|
213 |
+
" )\n",
|
214 |
+
")\n",
|
215 |
+
"print(\"Asking OpenAI the following question: {}\".format(question))\n",
|
216 |
+
"\n",
|
217 |
+
"answer = openai_chat.ask_question(question)"
|
218 |
+
]
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"cell_type": "code",
|
222 |
+
"execution_count": 6,
|
223 |
+
"metadata": {},
|
224 |
+
"outputs": [
|
225 |
+
{
|
226 |
+
"name": "stdout",
|
227 |
+
"output_type": "stream",
|
228 |
+
"text": [
|
229 |
+
"Based on the provided data from the repository, Mindify AI is an AI solution company that focuses on providing a platform for developers to learn and deploy generative AI solutions. Here are the key aspects of Mindify AI:\n",
|
230 |
+
"\n",
|
231 |
+
"1. **Learning AI Technologies**: Mindify AI offers both online and in-person training to help individuals and developers learn the latest generative AI technologies.\n",
|
232 |
+
"\n",
|
233 |
+
"2. **Deploying AI Solutions**: The platform allows developers to deploy generative AI solutions in their projects, facilitating the integration of advanced AI capabilities.\n",
|
234 |
+
"\n",
|
235 |
+
"3. **Fast Prototyping and Concept Validation**: Mindify AI assists in quickly prototyping and validating AI concepts, enabling faster time-to-market for AI-driven products and solutions.\n",
|
236 |
+
"\n",
|
237 |
+
"The mission of Mindify AI is to help developers and businesses bring their AI concepts to market more quickly and deliver value to their customers through advanced AI technologies.\n",
|
238 |
+
"\n",
|
239 |
+
"Here is a summary of the features provided by Mindify AI:\n",
|
240 |
+
"- **Learn AI Technologies**: Training programs to learn the latest generative AI technologies.\n",
|
241 |
+
"- **Deploy AI Solutions**: A platform for deploying generative AI solutions in projects.\n",
|
242 |
+
"- **Fast Prototyping and Concept Validation**: Support for rapid prototyping and validation of AI concepts.\n",
|
243 |
+
"\n",
|
244 |
+
"Overall, Mindify AI aims to empower developers and businesses with the knowledge and tools needed to leverage generative AI effectively.\n"
|
245 |
+
]
|
246 |
+
}
|
247 |
+
],
|
248 |
+
"source": [
|
249 |
+
"print(answer.content)"
|
250 |
+
]
|
251 |
+
},
|
252 |
+
{
|
253 |
+
"cell_type": "code",
|
254 |
+
"execution_count": 7,
|
255 |
+
"metadata": {},
|
256 |
+
"outputs": [
|
257 |
+
{
|
258 |
+
"name": "stderr",
|
259 |
+
"output_type": "stream",
|
260 |
+
"text": [
|
261 |
+
"/Users/mark/Documents/Mindify/CURA-alpha/.venv/lib/python3.9/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
|
262 |
+
" from .autonotebook import tqdm as notebook_tqdm\n"
|
263 |
+
]
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"name": "stdout",
|
267 |
+
"output_type": "stream",
|
268 |
+
"text": [
|
269 |
+
"Running on local URL: http://127.0.0.1:7860\n",
|
270 |
+
"\n",
|
271 |
+
"To create a public link, set `share=True` in `launch()`.\n"
|
272 |
+
]
|
273 |
+
},
|
274 |
+
{
|
275 |
+
"data": {
|
276 |
+
"text/html": [
|
277 |
+
"<div><iframe src=\"http://127.0.0.1:7860/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
278 |
+
],
|
279 |
+
"text/plain": [
|
280 |
+
"<IPython.core.display.HTML object>"
|
281 |
+
]
|
282 |
+
},
|
283 |
+
"metadata": {},
|
284 |
+
"output_type": "display_data"
|
285 |
+
},
|
286 |
+
{
|
287 |
+
"data": {
|
288 |
+
"text/plain": []
|
289 |
+
},
|
290 |
+
"execution_count": 7,
|
291 |
+
"metadata": {},
|
292 |
+
"output_type": "execute_result"
|
293 |
+
}
|
294 |
+
],
|
295 |
+
"source": [
|
296 |
+
"import gradio as gr\n",
|
297 |
+
"\n",
|
298 |
+
"def echo(question):\n",
|
299 |
+
" # Query the collection with the provided question\n",
|
300 |
+
" results = collection.query(\n",
|
301 |
+
" query_texts=[question], # Chroma will embed this for you\n",
|
302 |
+
" n_results=1 # Number of results to return\n",
|
303 |
+
" )\n",
|
304 |
+
" \n",
|
305 |
+
" # Append the retrieved document to the question\n",
|
306 |
+
" question = question + results[\"documents\"][0][0]\n",
|
307 |
+
" \n",
|
308 |
+
" # Use OpenAI's chat to ask the modified question\n",
|
309 |
+
" answer = openai_chat.ask_question(question)\n",
|
310 |
+
" \n",
|
311 |
+
" # Return the content of the answer\n",
|
312 |
+
" return answer.content\n",
|
313 |
+
"\n",
|
314 |
+
"# Define the Gradio interface\n",
|
315 |
+
"iface = gr.Interface(\n",
|
316 |
+
" fn=echo,\n",
|
317 |
+
" inputs=gr.Textbox(lines=2, placeholder=\"Enter your question here...\"),\n",
|
318 |
+
" outputs=gr.Code(label=\"Answer\", language=\"markdown\"),\n",
|
319 |
+
")\n",
|
320 |
+
"\n",
|
321 |
+
"# Launch the Gradio interface\n",
|
322 |
+
"iface.launch()\n"
|
323 |
+
]
|
324 |
+
}
|
325 |
+
],
|
326 |
+
"metadata": {
|
327 |
+
"kernelspec": {
|
328 |
+
"display_name": "Python 3",
|
329 |
+
"language": "python",
|
330 |
+
"name": "python3"
|
331 |
+
},
|
332 |
+
"language_info": {
|
333 |
+
"codemirror_mode": {
|
334 |
+
"name": "ipython",
|
335 |
+
"version": 3
|
336 |
+
},
|
337 |
+
"file_extension": ".py",
|
338 |
+
"mimetype": "text/x-python",
|
339 |
+
"name": "python",
|
340 |
+
"nbconvert_exporter": "python",
|
341 |
+
"pygments_lexer": "ipython3",
|
342 |
+
"version": "3.9.6"
|
343 |
+
}
|
344 |
+
},
|
345 |
+
"nbformat": 4,
|
346 |
+
"nbformat_minor": 2
|
347 |
+
}
|
database/__init__.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
# Load load_dotenv to load the .env file
|
3 |
+
from dotenv import load_dotenv
|
4 |
+
from supabase import create_client, Client
|
5 |
+
|
6 |
+
load_dotenv()
|
7 |
+
|
8 |
+
url: str = os.environ.get("SUPABASE_URL")
|
9 |
+
key: str = os.environ.get("SUPABASE_KEY")
|
10 |
+
supabase: Client = create_client(url, key)
|
11 |
+
|
12 |
+
def get_supabase() -> Client:
|
13 |
+
return supabase
|
14 |
+
|
15 |
+
def post_github_access_token(token: str, user_emaill: str) -> None:
|
16 |
+
supabase.table("users_github_access_tokens").insert({"github_access_token": token, "user_email": user_emaill}).execute()
|
17 |
+
|
18 |
+
def get_github_access_token(user_email: str):
|
19 |
+
# Get the last access token
|
20 |
+
table_results = supabase.table("users_github_access_tokens").select("github_access_token").eq("user_email", user_email).execute()
|
21 |
+
# Access the data attribute of the response object
|
22 |
+
data = table_results.data
|
23 |
+
|
24 |
+
# Check if there are results and return the last token
|
25 |
+
if data:
|
26 |
+
return data[-1]['github_access_token']
|
27 |
+
else:
|
28 |
+
return None # or handle the case where there is no matching token
|
29 |
+
|
30 |
+
def post_github_repo(repo_name: str, user_email: str) -> None:
|
31 |
+
supabase.table("users_github_repos_name").insert({"repo_name": repo_name, "user_email": user_email}).execute()
|
32 |
+
|
33 |
+
def get_github_repos(user_email: str) -> list:
|
34 |
+
return supabase.table("users_github_repos_name").select("repo_name").eq("user_email", user_email).execute().get("data")
|
index.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from fastapi import FastAPI
|
3 |
+
from fastapi.middleware.cors import CORSMiddleware
|
4 |
+
from database import post_github_access_token, post_github_repo, get_github_access_token
|
5 |
+
from cura import github_ingestion, vector_store
|
6 |
+
|
7 |
+
app = FastAPI(
|
8 |
+
title="Mindify Chat API",
|
9 |
+
description="API for Mindify Chat",
|
10 |
+
version="0.1"
|
11 |
+
)
|
12 |
+
|
13 |
+
app.add_middleware(
|
14 |
+
CORSMiddleware,
|
15 |
+
allow_origins=["*"],
|
16 |
+
allow_credentials=True,
|
17 |
+
allow_methods=["*"],
|
18 |
+
allow_headers=["*"]
|
19 |
+
)
|
20 |
+
|
21 |
+
@app.get("/")
|
22 |
+
def read_root():
|
23 |
+
return {"Hello": "World"}
|
24 |
+
|
25 |
+
@app.post("/github/access_token")
|
26 |
+
def post_github_access_token_route(token: str, user_email: str):
|
27 |
+
post_github_access_token(token, user_email)
|
28 |
+
return {"status": "success"}
|
29 |
+
|
30 |
+
@app.post("/github/repo")
|
31 |
+
def post_github_repo_route(repo_name: str, user_email: str):
|
32 |
+
post_github_repo(repo_name, user_email)
|
33 |
+
return {"status": "success"}
|
34 |
+
|
35 |
+
|
36 |
+
@app.post("/github/index")
|
37 |
+
def index_github_repo_route(repo_name: str, user_email: str):
|
38 |
+
access_token = get_github_access_token(user_email)
|
39 |
+
collection_name = repo_name.replace("/", "_")
|
40 |
+
if access_token is not None:
|
41 |
+
files = github_ingestion.ingest_github_repo(repo_name, access_token)
|
42 |
+
results = vector_store.index_vector_store(files=files, collection_name = collection_name)
|
43 |
+
if results:
|
44 |
+
return {"status": "success", "message": "GitHub data stored in ChromaDB"}
|
45 |
+
else:
|
46 |
+
return {"status": "error", "message": "Failed to set up ChromaDB collection"}
|
47 |
+
|
48 |
+
else:
|
49 |
+
return {"status": "error", "message": "Failed to get GitHub access token"}
|
50 |
+
|
51 |
+
@app.post("/github/query")
|
52 |
+
def query_github_repo_route(repo_name: str, query: str):
|
53 |
+
collection_name = repo_name.replace("/", "_")
|
54 |
+
if collection_name is not None:
|
55 |
+
response = vector_store.query_vector_store(collection_name=collection_name, query=query)
|
56 |
+
return {"status": "success", "response": response}
|
57 |
+
else:
|
58 |
+
return {"status": "error", "message": "Failed to set up ChromaDB collection"}
|
59 |
+
|
60 |
+
if __name__ == "__main__":
|
61 |
+
import uvicorn
|
62 |
+
uvicorn.run(app)
|
langgraph_code_assistant.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi
|
2 |
+
langchain_community
|
3 |
+
langchain_openai
|
4 |
+
supabase
|
5 |
+
uvicorn
|
6 |
+
chromadb
|
test_index.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Unit tests for the index.py file
|
3 |
+
"""
|
4 |
+
|
5 |
+
from fastapi.testclient import TestClient
|
6 |
+
|
7 |
+
from index import app
|
8 |
+
|
9 |
+
client = TestClient(app)
|
10 |
+
|
11 |
+
def test_read_root():
|
12 |
+
response = client.get("/")
|
13 |
+
assert response.status_code == 200
|
14 |
+
assert response.json() == {"Hello": "World"}
|
15 |
+
|
16 |
+
def test_post_github_access_token_route():
|
17 |
+
response = client.post("/github/access_token", json={"token": "test_token", "user_email": "test_email"})
|
18 |
+
assert response.status_code == 200
|
19 |
+
|
20 |
+
def test_post_github_repo_route():
|
21 |
+
response = client.post("/github/repo", json={"repo_name": "test_repo", "user_email": "test_email"})
|
22 |
+
assert response.status_code == 200
|
23 |
+
|
24 |
+
def test_index_github_repo_route():
|
25 |
+
response = client.post("/github/index", json={"repo_name": "test_repo", "user_email": "test_email"})
|
26 |
+
assert response.status_code == 200
|
27 |
+
|
28 |
+
def test_query_github_repo_route():
|
29 |
+
response = client.get("/github/query", json={"repo_name": "test_repo", "query": "test_query"})
|
30 |
+
assert response.status_code == 200
|
31 |
+
|