import gradio as gr from transformers import pipeline from huggingface_hub import from_pretrained_fastai # repo_id = "YOUR_USERNAME/YOUR_LEARNER_NAME" repo_id = "MasleK/snails_snakes_slugs" learner = from_pretrained_fastai(repo_id) def predict(image): label, index, scores = learner.predict(image) return {l: scores[i].item() for i,l in enumerate(learner.dls.vocab)} title = "Snail, snake, slug Classifier" description = "A classifier trained on about 300 images. Created as a demo for Gradio and HuggingFace Spaces." examples = ['330px-Orange_slug.jpg', 'Green_Snakes.jpg', 'Helix_pomatia_002.JPG'] gr.Interface( predict, inputs=gr.inputs.Image(label="candidate", type="filepath"), outputs=gr.outputs.Label(num_top_classes=3), title=title, examples=examples, description=description, ).launch()