Upload 3 files
Browse files- image.py +478 -0
- linear.py +134 -0
- polynomial.py +158 -0
image.py
ADDED
|
@@ -0,0 +1,478 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import sympy as sp
|
| 3 |
+
from pix2text import Pix2Text
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import numpy as np
|
| 6 |
+
import matplotlib.pyplot as plt
|
| 7 |
+
import re
|
| 8 |
+
import io
|
| 9 |
+
import logging
|
| 10 |
+
|
| 11 |
+
# Configure logging for debugging
|
| 12 |
+
logging.basicConfig(level=logging.INFO)
|
| 13 |
+
logger = logging.getLogger(__name__)
|
| 14 |
+
|
| 15 |
+
# Define symbolic variables
|
| 16 |
+
x, y = sp.symbols('x y')
|
| 17 |
+
|
| 18 |
+
# Initialize Pix2Text model globally
|
| 19 |
+
try:
|
| 20 |
+
p2t_model = Pix2Text.from_config()
|
| 21 |
+
logger.info("Pix2Text model loaded successfully")
|
| 22 |
+
except Exception as e:
|
| 23 |
+
logger.error(f"Failed to load Pix2Text model: {e}")
|
| 24 |
+
p2t_model = None
|
| 25 |
+
|
| 26 |
+
def clean_latex_expression(latex_str):
|
| 27 |
+
"""Clean and normalize LaTeX expression for SymPy parsing"""
|
| 28 |
+
if not latex_str:
|
| 29 |
+
return ""
|
| 30 |
+
|
| 31 |
+
latex_str = latex_str.strip()
|
| 32 |
+
latex_str = re.sub(r'^\$\$|\$\$$', '', latex_str) # Remove $$ delimiters
|
| 33 |
+
latex_str = re.sub(r'\\[a-zA-Z]+\{([^}]*)\}', r'\1', latex_str) # Remove LaTeX commands
|
| 34 |
+
latex_str = re.sub(r'\\{2,}', r'\\', latex_str) # Fix multiple backslashes
|
| 35 |
+
latex_str = re.sub(r'\s+', ' ', latex_str) # Normalize whitespace
|
| 36 |
+
latex_str = re.sub(r'\^{([^}]+)}', r'**\1', latex_str) # Convert x^{n} to x**n
|
| 37 |
+
latex_str = re.sub(r'(\d*\.?\d+)\s*([xy])', r'\1*\2', latex_str) # Add multiplication: 1.0x -> 1.0*x
|
| 38 |
+
latex_str = re.sub(r'\s*([+\-*/=])\s*', r'\1', latex_str) # Remove spaces around operators
|
| 39 |
+
if '=' in latex_str:
|
| 40 |
+
left, right = latex_str.split('=')
|
| 41 |
+
latex_str = f"{left} - ({right})" # Move right-hand side to left
|
| 42 |
+
return latex_str.strip()
|
| 43 |
+
|
| 44 |
+
def parse_equation_type(latex_str):
|
| 45 |
+
"""Determine if the equation is polynomial (single-variable) or linear system (two-variable)"""
|
| 46 |
+
try:
|
| 47 |
+
cleaned = clean_latex_expression(latex_str)
|
| 48 |
+
if not cleaned:
|
| 49 |
+
return 'polynomial'
|
| 50 |
+
|
| 51 |
+
# Check for two-variable system
|
| 52 |
+
if 'y' in cleaned and 'x' in cleaned:
|
| 53 |
+
if '\\\\' in latex_str or '\n' in latex_str or len(re.split(r'\\\\|\n|;', latex_str)) >= 2:
|
| 54 |
+
return 'linear_system'
|
| 55 |
+
return 'linear' # Single equation with x and y
|
| 56 |
+
|
| 57 |
+
# Check for single-variable polynomial
|
| 58 |
+
try:
|
| 59 |
+
expr = sp.sympify(cleaned.split('-')[0] if '-' in cleaned else cleaned)
|
| 60 |
+
if x in expr.free_symbols and y not in expr.free_symbols:
|
| 61 |
+
degree = sp.degree(expr, x)
|
| 62 |
+
return 'polynomial' if degree > 0 else 'linear'
|
| 63 |
+
elif x not in expr.free_symbols and y in expr.free_symbols:
|
| 64 |
+
return 'polynomial' # Treat as polynomial in y if x is absent
|
| 65 |
+
else:
|
| 66 |
+
return 'polynomial' # Default to polynomial if no clear variables
|
| 67 |
+
except:
|
| 68 |
+
if 'x**' in cleaned or '^' in latex_str:
|
| 69 |
+
return 'polynomial'
|
| 70 |
+
return 'polynomial' # Fallback to polynomial
|
| 71 |
+
except Exception as e:
|
| 72 |
+
logger.error(f"Error determining equation type: {e}")
|
| 73 |
+
return 'polynomial'
|
| 74 |
+
|
| 75 |
+
def extract_polynomial_coefficients(latex_str):
|
| 76 |
+
"""Extract polynomial coefficients from LaTeX string"""
|
| 77 |
+
try:
|
| 78 |
+
cleaned = clean_latex_expression(latex_str)
|
| 79 |
+
if '-' in cleaned:
|
| 80 |
+
cleaned = cleaned.split('-')[0].strip() # Use left side for polynomial
|
| 81 |
+
|
| 82 |
+
expr = sp.sympify(cleaned, evaluate=False)
|
| 83 |
+
if x not in expr.free_symbols and y not in expr.free_symbols:
|
| 84 |
+
raise ValueError("No variable (x or y) found in expression")
|
| 85 |
+
|
| 86 |
+
variable = x if x in expr.free_symbols else y
|
| 87 |
+
degree = sp.degree(expr, variable)
|
| 88 |
+
if degree < 1 or degree > 8:
|
| 89 |
+
raise ValueError(f"Polynomial degree {degree} is out of supported range (1-8)")
|
| 90 |
+
|
| 91 |
+
poly = sp.Poly(expr, variable)
|
| 92 |
+
coeffs = [float(poly.coeff_monomial(variable**i)) for i in range(degree, -1, -1)]
|
| 93 |
+
|
| 94 |
+
return {
|
| 95 |
+
"type": "polynomial",
|
| 96 |
+
"degree": degree,
|
| 97 |
+
"coeffs": " ".join(map(str, coeffs)),
|
| 98 |
+
"latex": latex_str,
|
| 99 |
+
"success": True,
|
| 100 |
+
"variable": str(variable)
|
| 101 |
+
}
|
| 102 |
+
except Exception as e:
|
| 103 |
+
logger.error(f"Error extracting polynomial coefficients: {e}")
|
| 104 |
+
return {
|
| 105 |
+
"type": "polynomial",
|
| 106 |
+
"degree": 2,
|
| 107 |
+
"coeffs": "1 0 0",
|
| 108 |
+
"latex": latex_str,
|
| 109 |
+
"success": False,
|
| 110 |
+
"error": str(e),
|
| 111 |
+
"variable": "x"
|
| 112 |
+
}
|
| 113 |
+
|
| 114 |
+
def extract_linear_system_coefficients(latex_str):
|
| 115 |
+
"""Extract linear system coefficients from LaTeX string"""
|
| 116 |
+
try:
|
| 117 |
+
cleaned = clean_latex_expression(latex_str)
|
| 118 |
+
equations = re.split(r'\\\\|\n|;', latex_str)
|
| 119 |
+
if len(equations) < 2:
|
| 120 |
+
equations = re.split(r'(?<=[0-9])\s*(?=[+-]?\s*[0-9]*[xy])', cleaned)
|
| 121 |
+
|
| 122 |
+
if len(equations) < 2 or 'y' not in cleaned or 'x' not in cleaned:
|
| 123 |
+
raise ValueError("Could not find two equations or two variables (x, y) in system")
|
| 124 |
+
|
| 125 |
+
eq1_str = equations[0].strip()
|
| 126 |
+
eq2_str = equations[1].strip()
|
| 127 |
+
|
| 128 |
+
def parse_linear_eq(eq_str):
|
| 129 |
+
if '-' not in eq_str:
|
| 130 |
+
raise ValueError("No equals sign (converted to '-') found")
|
| 131 |
+
left, right = eq_str.split('-')
|
| 132 |
+
expr = sp.sympify(left) - sp.sympify(right or '0')
|
| 133 |
+
a = float(expr.coeff(x, 1)) if expr.coeff(x, 1) else 0
|
| 134 |
+
b = float(expr.coeff(y, 1)) if expr.coeff(y, 1) else 0
|
| 135 |
+
c = float(-expr.as_coefficients_dict()[1]) if 1 in expr.as_coefficients_dict() else 0
|
| 136 |
+
return f"{a} {b} {c}"
|
| 137 |
+
|
| 138 |
+
eq1_coeffs = parse_linear_eq(eq1_str)
|
| 139 |
+
eq2_coeffs = parse_linear_eq(eq2_str)
|
| 140 |
+
|
| 141 |
+
return {
|
| 142 |
+
"type": "linear",
|
| 143 |
+
"eq1_coeffs": eq1_coeffs,
|
| 144 |
+
"eq2_coeffs": eq2_coeffs,
|
| 145 |
+
"latex": latex_str,
|
| 146 |
+
"success": True
|
| 147 |
+
}
|
| 148 |
+
except Exception as e:
|
| 149 |
+
logger.error(f"Error extracting linear system coefficients: {e}")
|
| 150 |
+
return {
|
| 151 |
+
"type": "linear",
|
| 152 |
+
"eq1_coeffs": "1 1 3",
|
| 153 |
+
"eq2_coeffs": "1 -1 1",
|
| 154 |
+
"latex": latex_str,
|
| 155 |
+
"success": False,
|
| 156 |
+
"error": str(e)
|
| 157 |
+
}
|
| 158 |
+
|
| 159 |
+
def extract_equation_from_image(image_file):
|
| 160 |
+
"""Extract equation from image using Pix2Text"""
|
| 161 |
+
try:
|
| 162 |
+
if p2t_model is None:
|
| 163 |
+
return {
|
| 164 |
+
"type": "error",
|
| 165 |
+
"latex": "Pix2Text model not loaded. Please check installation.",
|
| 166 |
+
"success": False
|
| 167 |
+
}
|
| 168 |
+
|
| 169 |
+
if image_file is None:
|
| 170 |
+
return {
|
| 171 |
+
"type": "error",
|
| 172 |
+
"latex": "No image file provided.",
|
| 173 |
+
"success": False
|
| 174 |
+
}
|
| 175 |
+
|
| 176 |
+
if isinstance(image_file, str):
|
| 177 |
+
image = Image.open(image_file)
|
| 178 |
+
else:
|
| 179 |
+
image = Image.open(image_file.name)
|
| 180 |
+
|
| 181 |
+
if image.mode != 'RGB':
|
| 182 |
+
image = image.convert('RGB')
|
| 183 |
+
|
| 184 |
+
logger.info(f"Processing image of size: {image.size}")
|
| 185 |
+
|
| 186 |
+
result = p2t_model.recognize_text_formula(image)
|
| 187 |
+
if not result or result.strip() == "":
|
| 188 |
+
return {
|
| 189 |
+
"type": "error",
|
| 190 |
+
"latex": "No text or formulas detected in the image.",
|
| 191 |
+
"success": False
|
| 192 |
+
}
|
| 193 |
+
|
| 194 |
+
logger.info(f"Extracted text: {result}")
|
| 195 |
+
|
| 196 |
+
eq_type = parse_equation_type(result)
|
| 197 |
+
if eq_type == 'polynomial':
|
| 198 |
+
return extract_polynomial_coefficients(result)
|
| 199 |
+
elif eq_type == 'linear_system':
|
| 200 |
+
return extract_linear_system_coefficients(result)
|
| 201 |
+
else:
|
| 202 |
+
return {
|
| 203 |
+
"type": "error",
|
| 204 |
+
"latex": f"Unsupported equation type detected: {eq_type}",
|
| 205 |
+
"success": False
|
| 206 |
+
}
|
| 207 |
+
except Exception as e:
|
| 208 |
+
logger.error(f"Error processing image: {e}")
|
| 209 |
+
return {
|
| 210 |
+
"type": "error",
|
| 211 |
+
"latex": f"Error processing image: {str(e)}",
|
| 212 |
+
"success": False
|
| 213 |
+
}
|
| 214 |
+
|
| 215 |
+
def solve_polynomial(degree, coeff_string, real_only):
|
| 216 |
+
"""Solve polynomial equation"""
|
| 217 |
+
try:
|
| 218 |
+
coeffs = list(map(float, coeff_string.strip().split()))
|
| 219 |
+
if len(coeffs) != degree + 1:
|
| 220 |
+
return f"⚠️ Please enter exactly {degree + 1} coefficients.", None, None
|
| 221 |
+
|
| 222 |
+
poly = sum([coeffs[i] * x**(degree - i) for i in range(degree + 1)])
|
| 223 |
+
simplified = sp.simplify(poly)
|
| 224 |
+
factored = sp.factor(simplified)
|
| 225 |
+
roots = sp.solve(sp.Eq(simplified, 0), x)
|
| 226 |
+
|
| 227 |
+
if real_only:
|
| 228 |
+
roots = [r for r in roots if sp.im(r) == 0]
|
| 229 |
+
|
| 230 |
+
roots_output = "$$\n" + "\\ ".join(
|
| 231 |
+
[f"r_{{{i}}} = {sp.latex(sp.nsimplify(r, rational=True))}" for i, r in enumerate(roots, 1)]
|
| 232 |
+
) + "\n$$"
|
| 233 |
+
|
| 234 |
+
steps_output = f"""
|
| 235 |
+
### Polynomial Expression
|
| 236 |
+
$$ {sp.latex(poly)} = 0 $$
|
| 237 |
+
### Simplified
|
| 238 |
+
$$ {sp.latex(simplified)} = 0 $$
|
| 239 |
+
### Factored
|
| 240 |
+
$$ {sp.latex(factored)} = 0 $$
|
| 241 |
+
### Roots {'(Only Real)' if real_only else '(All Roots)'}
|
| 242 |
+
{roots_output}
|
| 243 |
+
"""
|
| 244 |
+
|
| 245 |
+
x_vals = np.linspace(-10, 10, 400)
|
| 246 |
+
y_vals = np.polyval(coeffs, x_vals)
|
| 247 |
+
|
| 248 |
+
fig, ax = plt.subplots(figsize=(6, 4))
|
| 249 |
+
ax.plot(x_vals, y_vals, label="Polynomial", color="blue")
|
| 250 |
+
ax.axhline(0, color='black', linewidth=0.5)
|
| 251 |
+
ax.axvline(0, color='black', linewidth=0.5)
|
| 252 |
+
ax.grid(True)
|
| 253 |
+
ax.set_title("Graph of the Polynomial")
|
| 254 |
+
ax.set_xlabel("x")
|
| 255 |
+
ax.set_ylabel("f(x)")
|
| 256 |
+
ax.legend()
|
| 257 |
+
|
| 258 |
+
return steps_output, fig, ""
|
| 259 |
+
except Exception as e:
|
| 260 |
+
return f"❌ Error: {e}", None, ""
|
| 261 |
+
|
| 262 |
+
def solve_linear_system_from_coeffs(eq1_str, eq2_str):
|
| 263 |
+
"""Solve linear system"""
|
| 264 |
+
try:
|
| 265 |
+
coeffs1 = list(map(float, eq1_str.strip().split()))
|
| 266 |
+
coeffs2 = list(map(float, eq2_str.strip().split()))
|
| 267 |
+
|
| 268 |
+
if len(coeffs1) != 3 or len(coeffs2) != 3:
|
| 269 |
+
return "⚠️ Please enter exactly 3 coefficients for each equation.", None, None, None
|
| 270 |
+
|
| 271 |
+
a1, b1, c1 = coeffs1
|
| 272 |
+
a2, b2, c2 = coeffs2
|
| 273 |
+
|
| 274 |
+
eq1 = sp.Eq(a1 * x + b1 * y, c1)
|
| 275 |
+
eq2 = sp.Eq(a2 * x + b2 * y, c2)
|
| 276 |
+
|
| 277 |
+
sol = sp.solve([eq1, eq2], (x, y), dict=True)
|
| 278 |
+
if not sol:
|
| 279 |
+
return "❌ No unique solution.", None, None, None
|
| 280 |
+
|
| 281 |
+
solution = sol[0]
|
| 282 |
+
eq_latex = f"$$ {sp.latex(eq1)} \\ {sp.latex(eq2)} $$"
|
| 283 |
+
|
| 284 |
+
steps = rf"""
|
| 285 |
+
### Step-by-step Solution
|
| 286 |
+
1. **Original Equations:**
|
| 287 |
+
$$ {sp.latex(eq1)} $$
|
| 288 |
+
$$ {sp.latex(eq2)} $$
|
| 289 |
+
2. **Standard Form:** Already provided.
|
| 290 |
+
3. **Solve using SymPy `solve`:** Internally applies substitution/elimination.
|
| 291 |
+
4. **Solve for `x` and `y`:**
|
| 292 |
+
$$ x = {sp.latex(solution[x])}, \quad y = {sp.latex(solution[y])} $$
|
| 293 |
+
5. **Verification:** Substitute back into both equations."""
|
| 294 |
+
|
| 295 |
+
x_vals = np.linspace(-10, 10, 400)
|
| 296 |
+
f1 = sp.solve(eq1, y)
|
| 297 |
+
f2 = sp.solve(eq2, y)
|
| 298 |
+
|
| 299 |
+
fig, ax = plt.subplots()
|
| 300 |
+
if f1:
|
| 301 |
+
f1_func = sp.lambdify(x, f1[0], modules='numpy')
|
| 302 |
+
ax.plot(x_vals, f1_func(x_vals), label=sp.latex(eq1))
|
| 303 |
+
if f2:
|
| 304 |
+
f2_func = sp.lambdify(x, f2[0], modules='numpy')
|
| 305 |
+
ax.plot(x_vals, f2_func(x_vals), label=sp.latex(eq2))
|
| 306 |
+
|
| 307 |
+
ax.plot(solution[x], solution[y], 'ro', label=f"Solution ({solution[x]}, {solution[y]})")
|
| 308 |
+
ax.axhline(0, color='black', linewidth=0.5)
|
| 309 |
+
ax.axvline(0, color='black', linewidth=0.5)
|
| 310 |
+
ax.legend()
|
| 311 |
+
ax.set_title("Graph of the Linear System")
|
| 312 |
+
ax.grid(True)
|
| 313 |
+
|
| 314 |
+
return eq_latex, steps, fig, ""
|
| 315 |
+
except Exception as e:
|
| 316 |
+
return f"❌ Error: {e}", None, None, None
|
| 317 |
+
|
| 318 |
+
def solve_extracted_equation(eq_data, real_only):
|
| 319 |
+
"""Route to appropriate solver based on equation type"""
|
| 320 |
+
if eq_data["type"] == "polynomial":
|
| 321 |
+
return solve_polynomial(eq_data["degree"], eq_data["coeffs"], real_only)
|
| 322 |
+
elif eq_data["type"] == "linear":
|
| 323 |
+
return "❌ Single linear equation not supported. Please upload a system of equations.", None, ""
|
| 324 |
+
elif eq_data["type"] == "linear_system":
|
| 325 |
+
return solve_linear_system_from_coeffs(eq_data["eq1_coeffs"], eq_data["eq2_coeffs"])
|
| 326 |
+
else:
|
| 327 |
+
return "❌ Unknown equation type", None, ""
|
| 328 |
+
|
| 329 |
+
def image_tab():
|
| 330 |
+
"""Create the Image Upload Solver tab"""
|
| 331 |
+
with gr.Tab("Image Upload Solver"):
|
| 332 |
+
gr.Markdown("## Solve Equations from Image")
|
| 333 |
+
|
| 334 |
+
with gr.Row():
|
| 335 |
+
image_input = gr.File(
|
| 336 |
+
label="Upload Question Image",
|
| 337 |
+
file_types=[".pdf", ".png", ".jpg", ".jpeg"],
|
| 338 |
+
file_count="single"
|
| 339 |
+
)
|
| 340 |
+
image_upload_btn = gr.Button("Process Image")
|
| 341 |
+
|
| 342 |
+
gr.Markdown("**Supported Formats:** .pdf, .png, .jpg, .jpeg")
|
| 343 |
+
|
| 344 |
+
with gr.Row():
|
| 345 |
+
real_image_checkbox = gr.Checkbox(label="Show Only Real Roots (for Polynomials)", value=False)
|
| 346 |
+
preview_image_btn = gr.Button("Preview Equation")
|
| 347 |
+
|
| 348 |
+
image_equation_display = gr.Markdown()
|
| 349 |
+
|
| 350 |
+
with gr.Row():
|
| 351 |
+
confirm_image_btn = gr.Button("Display Solution", visible=False)
|
| 352 |
+
edit_image_btn = gr.Button("Make Changes Manually", visible=False)
|
| 353 |
+
|
| 354 |
+
edit_latex_input = gr.Textbox(label="Edit LaTeX Equation", visible=False, lines=3)
|
| 355 |
+
save_edit_btn = gr.Button("Save Changes", visible=False)
|
| 356 |
+
|
| 357 |
+
image_steps_md = gr.Markdown()
|
| 358 |
+
image_plot_output = gr.Plot()
|
| 359 |
+
extracted_eq_state = gr.State()
|
| 360 |
+
|
| 361 |
+
def handle_image_upload(image_file):
|
| 362 |
+
"""Handle image upload and initial processing"""
|
| 363 |
+
if image_file is None:
|
| 364 |
+
return "", None, "", None, None
|
| 365 |
+
|
| 366 |
+
try:
|
| 367 |
+
eq_data = extract_equation_from_image(image_file)
|
| 368 |
+
if eq_data["success"]:
|
| 369 |
+
return "", eq_data, "", None, None
|
| 370 |
+
else:
|
| 371 |
+
return "", eq_data, "", None, None
|
| 372 |
+
except Exception as e:
|
| 373 |
+
return "", None, "", None, None
|
| 374 |
+
|
| 375 |
+
image_upload_btn.click(
|
| 376 |
+
fn=handle_image_upload,
|
| 377 |
+
inputs=[image_input],
|
| 378 |
+
outputs=[image_equation_display, extracted_eq_state, image_steps_md,
|
| 379 |
+
image_plot_output, edit_latex_input]
|
| 380 |
+
)
|
| 381 |
+
|
| 382 |
+
def preview_image_equation(eq_data, real_only):
|
| 383 |
+
"""Preview the extracted equation"""
|
| 384 |
+
if eq_data is None:
|
| 385 |
+
return ("⚠️ No equation data available. Please upload and process an image first.",
|
| 386 |
+
gr.update(visible=False), gr.update(visible=False), "", None)
|
| 387 |
+
|
| 388 |
+
if eq_data["type"] == "error":
|
| 389 |
+
return (eq_data["latex"], gr.update(visible=False), gr.update(visible=False), "", None)
|
| 390 |
+
|
| 391 |
+
if eq_data["type"] == "polynomial":
|
| 392 |
+
eq_type_display = "Polynomial Equation"
|
| 393 |
+
elif eq_data["type"] == "linear_system":
|
| 394 |
+
eq_type_display = "Linear System"
|
| 395 |
+
else:
|
| 396 |
+
eq_type_display = "Unknown Equation Type"
|
| 397 |
+
|
| 398 |
+
preview_text = f"""
|
| 399 |
+
### ✅ Confirm {eq_type_display}
|
| 400 |
+
**Extracted LaTeX:** {eq_data['latex']}
|
| 401 |
+
"""
|
| 402 |
+
|
| 403 |
+
return (preview_text, gr.update(visible=True), gr.update(visible=True), "", None)
|
| 404 |
+
|
| 405 |
+
preview_image_btn.click(
|
| 406 |
+
fn=preview_image_equation,
|
| 407 |
+
inputs=[extracted_eq_state, real_image_checkbox],
|
| 408 |
+
outputs=[image_equation_display, confirm_image_btn, edit_image_btn,
|
| 409 |
+
image_steps_md, image_plot_output]
|
| 410 |
+
)
|
| 411 |
+
|
| 412 |
+
def confirm_image_solution(eq_data, real_only):
|
| 413 |
+
"""Confirm and solve the extracted equation"""
|
| 414 |
+
if eq_data is None or eq_data["type"] == "error":
|
| 415 |
+
return "⚠️ No valid equation to solve.", None, ""
|
| 416 |
+
|
| 417 |
+
try:
|
| 418 |
+
steps, plot, error = solve_extracted_equation(eq_data, real_only)
|
| 419 |
+
return steps, plot, ""
|
| 420 |
+
except Exception as e:
|
| 421 |
+
return f"❌ Error solving equation: {str(e)}", None, ""
|
| 422 |
+
|
| 423 |
+
confirm_image_btn.click(
|
| 424 |
+
fn=confirm_image_solution,
|
| 425 |
+
inputs=[extracted_eq_state, real_image_checkbox],
|
| 426 |
+
outputs=[image_steps_md, image_plot_output, image_equation_display]
|
| 427 |
+
)
|
| 428 |
+
|
| 429 |
+
def enable_manual_edit(eq_data):
|
| 430 |
+
"""Enable manual editing of the equation"""
|
| 431 |
+
if eq_data is None:
|
| 432 |
+
latex_value = "No equation to edit. Please upload an image first."
|
| 433 |
+
elif eq_data["type"] == "error":
|
| 434 |
+
latex_value = "Error in extraction. Please enter your equation manually."
|
| 435 |
+
else:
|
| 436 |
+
latex_value = eq_data.get("latex", "")
|
| 437 |
+
|
| 438 |
+
return (gr.update(visible=True, value=latex_value),
|
| 439 |
+
gr.update(visible=True),
|
| 440 |
+
gr.update(visible=False),
|
| 441 |
+
gr.update(visible=False))
|
| 442 |
+
|
| 443 |
+
edit_image_btn.click(
|
| 444 |
+
fn=enable_manual_edit,
|
| 445 |
+
inputs=[extracted_eq_state],
|
| 446 |
+
outputs=[edit_latex_input, save_edit_btn, confirm_image_btn, edit_image_btn]
|
| 447 |
+
)
|
| 448 |
+
|
| 449 |
+
def save_manual_changes(latex_input, real_only):
|
| 450 |
+
"""Save manual changes and solve"""
|
| 451 |
+
try:
|
| 452 |
+
if not latex_input or latex_input.strip() == "":
|
| 453 |
+
return "⚠️ Please enter a valid equation.", None, ""
|
| 454 |
+
|
| 455 |
+
eq_type = parse_equation_type(latex_input)
|
| 456 |
+
if eq_type == 'polynomial':
|
| 457 |
+
eq_data = extract_polynomial_coefficients(latex_input)
|
| 458 |
+
steps, plot, error = solve_polynomial(eq_data["degree"], eq_data["coeffs"], real_only)
|
| 459 |
+
elif eq_type == 'linear_system':
|
| 460 |
+
eq_data = extract_linear_system_coefficients(latex_input)
|
| 461 |
+
eq_latex, steps, plot, error = solve_linear_system_from_coeffs(
|
| 462 |
+
eq_data["eq1_coeffs"], eq_data["eq2_coeffs"])
|
| 463 |
+
else:
|
| 464 |
+
return "❌ Unsupported equation type", None, ""
|
| 465 |
+
|
| 466 |
+
return steps, plot, ""
|
| 467 |
+
except Exception as e:
|
| 468 |
+
return f"❌ Error parsing manual input: {str(e)}", None, ""
|
| 469 |
+
|
| 470 |
+
save_edit_btn.click(
|
| 471 |
+
fn=save_manual_changes,
|
| 472 |
+
inputs=[edit_latex_input, real_image_checkbox],
|
| 473 |
+
outputs=[image_steps_md, image_plot_output, image_equation_display]
|
| 474 |
+
)
|
| 475 |
+
|
| 476 |
+
return (image_input, image_upload_btn, real_image_checkbox, preview_image_btn,
|
| 477 |
+
image_equation_display, confirm_image_btn, edit_image_btn, edit_latex_input,
|
| 478 |
+
save_edit_btn, image_steps_md, image_plot_output, extracted_eq_state)
|
linear.py
ADDED
|
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import sympy as sp
|
| 3 |
+
import numpy as np
|
| 4 |
+
import matplotlib.pyplot as plt
|
| 5 |
+
import random
|
| 6 |
+
|
| 7 |
+
x, y = sp.symbols('x y')
|
| 8 |
+
|
| 9 |
+
def generate_linear_template():
|
| 10 |
+
return "$$ a_1x + b_1y = c_1 \\ a_2x + b_2y = c_2 $$"
|
| 11 |
+
|
| 12 |
+
def load_linear_example():
|
| 13 |
+
examples = [
|
| 14 |
+
("1 -4 -2", "5 1 9"),
|
| 15 |
+
("2 1 8", "1 -1 2"),
|
| 16 |
+
("3 2 12", "1 1 5"),
|
| 17 |
+
("4 -1 3", "2 3 6"),
|
| 18 |
+
("1 2 10", "3 -1 5")
|
| 19 |
+
]
|
| 20 |
+
return random.choice(examples)
|
| 21 |
+
|
| 22 |
+
def solve_linear_system_from_coeffs(eq1_str, eq2_str):
|
| 23 |
+
try:
|
| 24 |
+
coeffs1 = list(map(float, eq1_str.strip().split()))
|
| 25 |
+
coeffs2 = list(map(float, eq2_str.strip().split()))
|
| 26 |
+
|
| 27 |
+
if len(coeffs1) != 3 or len(coeffs2) != 3:
|
| 28 |
+
return "⚠️ Please enter exactly 3 coefficients for each equation.", None, None, None
|
| 29 |
+
|
| 30 |
+
a1, b1, c1 = coeffs1
|
| 31 |
+
a2, b2, c2 = coeffs2
|
| 32 |
+
|
| 33 |
+
eq1 = sp.Eq(a1 * x + b1 * y, c1)
|
| 34 |
+
eq2 = sp.Eq(a2 * x + b2 * y, c2)
|
| 35 |
+
|
| 36 |
+
sol = sp.solve([eq1, eq2], (x, y), dict=True)
|
| 37 |
+
if not sol:
|
| 38 |
+
return "❌ No unique solution.", None, None, None
|
| 39 |
+
|
| 40 |
+
solution = sol[0]
|
| 41 |
+
eq_latex = f"$$ {sp.latex(eq1)} \\ {sp.latex(eq2)} $$"
|
| 42 |
+
|
| 43 |
+
steps = rf"""
|
| 44 |
+
### Step-by-step Solution
|
| 45 |
+
1. **Original Equations:**
|
| 46 |
+
$$ {sp.latex(eq1)} $$
|
| 47 |
+
$$ {sp.latex(eq2)} $$
|
| 48 |
+
2. **Standard Form:** Already provided.
|
| 49 |
+
3. **Solve using SymPy `solve`:** Internally applies substitution/elimination.
|
| 50 |
+
4. **Solve for `x` and `y`:**
|
| 51 |
+
$$ x = {sp.latex(solution[x])}, \quad y = {sp.latex(solution[y])} $$
|
| 52 |
+
5. **Verification:** Substitute back into both equations."""
|
| 53 |
+
|
| 54 |
+
x_vals = np.linspace(-10, 10, 400)
|
| 55 |
+
f1 = sp.solve(eq1, y)
|
| 56 |
+
f2 = sp.solve(eq2, y)
|
| 57 |
+
|
| 58 |
+
fig, ax = plt.subplots()
|
| 59 |
+
if f1:
|
| 60 |
+
f1_func = sp.lambdify(x, f1[0], modules='numpy')
|
| 61 |
+
ax.plot(x_vals, f1_func(x_vals), label=sp.latex(eq1))
|
| 62 |
+
if f2:
|
| 63 |
+
f2_func = sp.lambdify(x, f2[0], modules='numpy')
|
| 64 |
+
ax.plot(x_vals, f2_func(x_vals), label=sp.latex(eq2))
|
| 65 |
+
|
| 66 |
+
ax.plot(solution[x], solution[y], 'ro', label=f"Solution ({solution[x]}, {solution[y]})")
|
| 67 |
+
ax.axhline(0, color='black', linewidth=0.5)
|
| 68 |
+
ax.axvline(0, color='black', linewidth=0.5)
|
| 69 |
+
ax.legend()
|
| 70 |
+
ax.set_title("Graph of the Linear System")
|
| 71 |
+
ax.grid(True)
|
| 72 |
+
|
| 73 |
+
return eq_latex, steps, fig, ""
|
| 74 |
+
except Exception as e:
|
| 75 |
+
return f"❌ Error: {e}", None, None, None
|
| 76 |
+
|
| 77 |
+
def linear_tab():
|
| 78 |
+
with gr.Tab("Linear System Solver"):
|
| 79 |
+
gr.Markdown("## Solve 2x2 Linear System")
|
| 80 |
+
linear_template = gr.Markdown(value=generate_linear_template())
|
| 81 |
+
|
| 82 |
+
with gr.Row():
|
| 83 |
+
linear_eq1_input = gr.Textbox(label="Equation 1 Coefficients (a1 b1 c1)", placeholder="e.g. 2 1 8")
|
| 84 |
+
linear_eq2_input = gr.Textbox(label="Equation 2 Coefficients (a2 b2 c2)", placeholder="e.g. 1 -1 2")
|
| 85 |
+
|
| 86 |
+
linear_example_btn = gr.Button("Load Example")
|
| 87 |
+
preview_button = gr.Button("Preview Equations")
|
| 88 |
+
|
| 89 |
+
linear_equation_display = gr.Markdown()
|
| 90 |
+
with gr.Row():
|
| 91 |
+
confirm_btn = gr.Button("Display Solution", visible=False)
|
| 92 |
+
cancel_btn = gr.Button("Make Changes in Equation", visible=False)
|
| 93 |
+
|
| 94 |
+
linear_steps_md = gr.Markdown()
|
| 95 |
+
linear_plot = gr.Plot()
|
| 96 |
+
linear_error = gr.Textbox(visible=False)
|
| 97 |
+
|
| 98 |
+
def update_example():
|
| 99 |
+
eq1, eq2 = load_linear_example()
|
| 100 |
+
return eq1, eq2
|
| 101 |
+
|
| 102 |
+
linear_example_btn.click(fn=update_example, inputs=[], outputs=[linear_eq1_input, linear_eq2_input])
|
| 103 |
+
|
| 104 |
+
def preview_equations(eq1_str, eq2_str):
|
| 105 |
+
try:
|
| 106 |
+
coeffs1 = list(map(float, eq1_str.strip().split()))
|
| 107 |
+
coeffs2 = list(map(float, eq2_str.strip().split()))
|
| 108 |
+
if len(coeffs1) != 3 or len(coeffs2) != 3:
|
| 109 |
+
return "⚠️ Please enter exactly 3 coefficients for each equation.", gr.update(visible=False), gr.update(visible=False)
|
| 110 |
+
a1, b1, c1 = coeffs1
|
| 111 |
+
a2, b2, c2 = coeffs2
|
| 112 |
+
eq1 = sp.Eq(a1 * x + b1 * y, c1)
|
| 113 |
+
eq2 = sp.Eq(a2 * x + b2 * y, c2)
|
| 114 |
+
eq_latex = f"### ✅ Confirm Equations\n\n$$ {sp.latex(eq1)} \\\\ {sp.latex(eq2)} $$"
|
| 115 |
+
return eq_latex, gr.update(visible=True), gr.update(visible=True)
|
| 116 |
+
except Exception as e:
|
| 117 |
+
return f"❌ Error parsing equations: {e}", gr.update(visible=False), gr.update(visible=False)
|
| 118 |
+
|
| 119 |
+
preview_button.click(
|
| 120 |
+
fn=preview_equations,
|
| 121 |
+
inputs=[linear_eq1_input, linear_eq2_input],
|
| 122 |
+
outputs=[linear_equation_display, confirm_btn, cancel_btn]
|
| 123 |
+
)
|
| 124 |
+
|
| 125 |
+
cancel_btn.click(
|
| 126 |
+
fn=lambda: (gr.update(visible=False), gr.update(visible=False), "", None, None),
|
| 127 |
+
outputs=[confirm_btn, cancel_btn, linear_equation_display, linear_steps_md, linear_plot]
|
| 128 |
+
)
|
| 129 |
+
|
| 130 |
+
confirm_btn.click(
|
| 131 |
+
fn=solve_linear_system_from_coeffs,
|
| 132 |
+
inputs=[linear_eq1_input, linear_eq2_input],
|
| 133 |
+
outputs=[linear_equation_display, linear_steps_md, linear_plot, linear_error]
|
| 134 |
+
)
|
polynomial.py
ADDED
|
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import sympy as sp
|
| 3 |
+
import numpy as np
|
| 4 |
+
import matplotlib.pyplot as plt
|
| 5 |
+
|
| 6 |
+
# Define symbolic variable for polynomial operations
|
| 7 |
+
x = sp.symbols('x')
|
| 8 |
+
|
| 9 |
+
# Function to generate a LaTeX template for a polynomial based on its degree
|
| 10 |
+
def generate_polynomial_template(degree):
|
| 11 |
+
terms = [f"a_{{{i}}}x^{degree - i}" for i in range(degree)]
|
| 12 |
+
terms.append(f"a_{{{degree}}}")
|
| 13 |
+
return "$$" + " + ".join(terms) + " = 0$$"
|
| 14 |
+
|
| 15 |
+
# Function to load example coefficients for a given polynomial degree
|
| 16 |
+
def load_poly_example(degree):
|
| 17 |
+
examples = {
|
| 18 |
+
1: "3 9",
|
| 19 |
+
2: "1 -3 2",
|
| 20 |
+
3: "1 -6 11 -6",
|
| 21 |
+
4: "1 0 -5 0 4",
|
| 22 |
+
5: "1 -9 3 8 1 8",
|
| 23 |
+
6: "1 -9 3 8 1 8 3",
|
| 24 |
+
7: "1 -9 3 8 1 8 6 2",
|
| 25 |
+
8: "1 -9 3 8 1 8 2 3 7"
|
| 26 |
+
}
|
| 27 |
+
return examples.get(degree, "")
|
| 28 |
+
|
| 29 |
+
# Function to solve the polynomial equation and generate a graph
|
| 30 |
+
def solve_polynomial(degree, coeff_string, real_only):
|
| 31 |
+
try:
|
| 32 |
+
coeffs = list(map(float, coeff_string.strip().split()))
|
| 33 |
+
if len(coeffs) != degree + 1:
|
| 34 |
+
return f"⚠️ Please enter exactly {degree + 1} coefficients.", None, None
|
| 35 |
+
|
| 36 |
+
poly = sum([coeffs[i] * x**(degree - i) for i in range(degree + 1)])
|
| 37 |
+
simplified = sp.simplify(poly)
|
| 38 |
+
factored = sp.factor(simplified)
|
| 39 |
+
roots = sp.solve(sp.Eq(simplified, 0), x)
|
| 40 |
+
|
| 41 |
+
if real_only:
|
| 42 |
+
roots = [r for r in roots if sp.im(r) == 0]
|
| 43 |
+
|
| 44 |
+
roots_output = "$$\n" + "\\ ".join(
|
| 45 |
+
[f"r_{{{i}}} = {sp.latex(sp.nsimplify(r, rational=True))}" for i, r in enumerate(roots, 1)]
|
| 46 |
+
) + "\n$$"
|
| 47 |
+
|
| 48 |
+
steps_output = f"""
|
| 49 |
+
### Polynomial Expression
|
| 50 |
+
$$ {sp.latex(poly)} = 0 $$
|
| 51 |
+
### Simplified
|
| 52 |
+
$$ {sp.latex(simplified)} = 0 $$
|
| 53 |
+
### Factored
|
| 54 |
+
$$ {sp.latex(factored)} = 0 $$
|
| 55 |
+
### Roots {'(Only Real)' if real_only else '(All Roots)'}
|
| 56 |
+
{roots_output}
|
| 57 |
+
"""
|
| 58 |
+
|
| 59 |
+
x_vals = np.linspace(-10, 10, 400)
|
| 60 |
+
y_vals = np.polyval(coeffs, x_vals)
|
| 61 |
+
|
| 62 |
+
fig, ax = plt.subplots(figsize=(6, 4))
|
| 63 |
+
ax.plot(x_vals, y_vals, label="Polynomial", color="blue")
|
| 64 |
+
ax.axhline(0, color='black', linewidth=0.5)
|
| 65 |
+
ax.axvline(0, color='black', linewidth=0.5)
|
| 66 |
+
ax.grid(True)
|
| 67 |
+
ax.set_title("Graph of the Polynomial")
|
| 68 |
+
ax.set_xlabel("x")
|
| 69 |
+
ax.set_ylabel("f(x)")
|
| 70 |
+
ax.legend()
|
| 71 |
+
|
| 72 |
+
return steps_output, fig, ""
|
| 73 |
+
except Exception as e:
|
| 74 |
+
return f"❌ Error: {e}", None, ""
|
| 75 |
+
|
| 76 |
+
# Function to create the Polynomial Solver tab with Gradio components
|
| 77 |
+
def polynomial_tab():
|
| 78 |
+
with gr.Tab("Polynomial Solver"):
|
| 79 |
+
# Row for displaying the equation template and real roots checkbox
|
| 80 |
+
with gr.Row():
|
| 81 |
+
template_display = gr.Markdown(value=generate_polynomial_template(2))
|
| 82 |
+
real_checkbox = gr.Checkbox(label="Show Only Real Roots", value=False)
|
| 83 |
+
|
| 84 |
+
# Row for selecting the polynomial degree and entering coefficients
|
| 85 |
+
with gr.Row():
|
| 86 |
+
degree_slider = gr.Slider(1, 8, value=2, step=1, label="Select Degree of Polynomial Equation")
|
| 87 |
+
coeff_input = gr.Textbox(label="Enter Coefficients (space-separated)", placeholder="e.g. 1 -3 2")
|
| 88 |
+
|
| 89 |
+
# Row for example and preview buttons
|
| 90 |
+
with gr.Row():
|
| 91 |
+
example_btn = gr.Button("Load Example")
|
| 92 |
+
preview_poly_button = gr.Button("Preview Equation")
|
| 93 |
+
|
| 94 |
+
# Row for displaying the confirmed equation
|
| 95 |
+
with gr.Row():
|
| 96 |
+
poly_equation_display = gr.Markdown()
|
| 97 |
+
|
| 98 |
+
# Row for confirm and cancel buttons
|
| 99 |
+
with gr.Row():
|
| 100 |
+
confirm_poly_btn = gr.Button("Display Solution", visible=False)
|
| 101 |
+
cancel_poly_btn = gr.Button("Make Changes in Equation", visible=False)
|
| 102 |
+
|
| 103 |
+
# Markdown component to display step-by-step solution
|
| 104 |
+
steps_md = gr.Markdown()
|
| 105 |
+
|
| 106 |
+
# Plot component to display the polynomial graph
|
| 107 |
+
plot_output = gr.Plot()
|
| 108 |
+
|
| 109 |
+
# Textbox to display errors (initially hidden)
|
| 110 |
+
error_box = gr.Textbox(visible=False)
|
| 111 |
+
|
| 112 |
+
# Function to preview the polynomial equation based on user input
|
| 113 |
+
def preview_polynomial(degree, coeff_string, real_only):
|
| 114 |
+
try:
|
| 115 |
+
coeffs = list(map(float, coeff_string.strip().split()))
|
| 116 |
+
if len(coeffs) != degree + 1:
|
| 117 |
+
return f"⚠️ Please enter exactly {degree + 1} coefficients.", gr.update(visible=False), gr.update(visible=False), "", None
|
| 118 |
+
poly = sum([coeffs[i] * x**(degree - i) for i in range(degree + 1)])
|
| 119 |
+
eq_latex = f"### ✅ Confirm Polynomial\n\n$$ {sp.latex(poly)} = 0 $$"
|
| 120 |
+
return eq_latex, gr.update(visible=True), gr.update(visible=True), "", None
|
| 121 |
+
except Exception as e:
|
| 122 |
+
return f"❌ Error parsing coefficients: {e}", gr.update(visible=False), gr.update(visible=False), "", None
|
| 123 |
+
|
| 124 |
+
# Event handler for preview button click
|
| 125 |
+
preview_poly_button.click(
|
| 126 |
+
fn=preview_polynomial,
|
| 127 |
+
inputs=[degree_slider, coeff_input, real_checkbox],
|
| 128 |
+
outputs=[poly_equation_display, confirm_poly_btn, cancel_poly_btn, steps_md, plot_output]
|
| 129 |
+
)
|
| 130 |
+
|
| 131 |
+
# Function to handle cancellation of the preview
|
| 132 |
+
def cancel_poly():
|
| 133 |
+
return gr.update(visible=False), gr.update(visible=False), "", "", None
|
| 134 |
+
|
| 135 |
+
# Event handler for cancel button click
|
| 136 |
+
cancel_poly_btn.click(
|
| 137 |
+
fn=cancel_poly,
|
| 138 |
+
inputs=[],
|
| 139 |
+
outputs=[confirm_poly_btn, cancel_poly_btn, poly_equation_display, steps_md, plot_output]
|
| 140 |
+
)
|
| 141 |
+
|
| 142 |
+
# Event handler for confirm button click to solve and display results
|
| 143 |
+
confirm_poly_btn.click(
|
| 144 |
+
fn=solve_polynomial,
|
| 145 |
+
inputs=[degree_slider, coeff_input, real_checkbox],
|
| 146 |
+
outputs=[steps_md, plot_output, error_box]
|
| 147 |
+
)
|
| 148 |
+
|
| 149 |
+
# Event handler to update the template when the degree slider changes
|
| 150 |
+
degree_slider.change(fn=generate_polynomial_template, inputs=degree_slider, outputs=template_display)
|
| 151 |
+
|
| 152 |
+
# Event handler to load an example when the example button is clicked
|
| 153 |
+
example_btn.click(fn=load_poly_example, inputs=degree_slider, outputs=coeff_input)
|
| 154 |
+
|
| 155 |
+
# Initialize the template display with the default degree (2) on load
|
| 156 |
+
template_display.value = generate_polynomial_template(2)
|
| 157 |
+
|
| 158 |
+
return template_display, real_checkbox, degree_slider, coeff_input, example_btn, preview_poly_button, poly_equation_display, confirm_poly_btn, cancel_poly_btn, steps_md, plot_output, error_box
|