import gradio as gr import sympy as sp import numpy as np import matplotlib.pyplot as plt from llm_interface import explain_with_llm # Define symbolic variable for polynomial operations x = sp.symbols('x') # Function to generate a LaTeX template for a polynomial based on its degree def generate_polynomial_template(degree): terms = [f"a_{{{i}}}x^{degree - i}" for i in range(degree)] terms.append(f"a_{{{degree}}}") return "$$" + " + ".join(terms) + " = 0$$" # Function to load example coefficients for a given polynomial degree def load_poly_example(degree): examples = { 1: "3 9", 2: "1 -3 2", 3: "1 -6 11 -6", 4: "1 0 -5 0 4", 5: "1 -9 3 8 1 8", 6: "1 -9 3 8 1 8 3", 7: "1 -9 3 8 1 8 6 2", 8: "1 -9 3 8 1 8 2 3 7" } return examples.get(degree, "") # Function to solve the polynomial equation and generate a graph def solve_polynomial(degree, coeff_string, real_only): try: coeffs = list(map(float, coeff_string.strip().split())) if len(coeffs) != degree + 1: return f"⚠️ Please enter exactly {degree + 1} coefficients.", None, None poly = sum([coeffs[i] * x**(degree - i) for i in range(degree + 1)]) simplified = sp.simplify(poly) factored = sp.factor(simplified) roots = sp.solve(sp.Eq(simplified, 0), x) if real_only: roots = [r for r in roots if sp.im(r) == 0] roots_output = "$$\n" + "\\ ".join( [f"r_{{{i}}} = {sp.latex(sp.nsimplify(r, rational=True))}" for i, r in enumerate(roots, 1)] ) + "\n$$" steps_output = f""" ### Polynomial Expression $$ {sp.latex(poly)} = 0 $$ ### Simplified $$ {sp.latex(simplified)} = 0 $$ ### Factored $$ {sp.latex(factored)} = 0 $$ ### Roots {'(Only Real)' if real_only else '(All Roots)'} {roots_output} """ x_vals = np.linspace(-10, 10, 400) y_vals = np.polyval(coeffs, x_vals) fig, ax = plt.subplots(figsize=(6, 4)) ax.plot(x_vals, y_vals, label="Polynomial", color="blue") ax.axhline(0, color='black', linewidth=0.5) ax.axvline(0, color='black', linewidth=0.5) ax.grid(True) ax.set_title("Graph of the Polynomial") ax.set_xlabel("x") ax.set_ylabel("f(x)") ax.legend() return steps_output, fig, "" except Exception as e: return f"❌ Error: {e}", None, "" # Function to create the Polynomial Solver tab with Gradio components def polynomial_tab(): with gr.Tab("Polynomial Solver"): # Row for displaying the equation template and real roots checkbox with gr.Row(): template_display = gr.Markdown(value=generate_polynomial_template(2)) real_checkbox = gr.Checkbox(label="Show Only Real Roots", value=False) # Row for selecting the polynomial degree and entering coefficients with gr.Row(): degree_slider = gr.Slider(1, 8, value=2, step=1, label="Select Degree of Polynomial Equation") coeff_input = gr.Textbox(label="Enter Coefficients (space-separated)", placeholder="e.g. 1 -3 2") # Row for example and preview buttons with gr.Row(): example_btn = gr.Button("Load Example") preview_poly_button = gr.Button("Preview Equation") # Row for displaying the confirmed equation with gr.Row(): poly_equation_display = gr.Markdown() # Row for confirm and cancel buttons with gr.Row(): confirm_poly_btn = gr.Button("Display Solution", visible=False) cancel_poly_btn = gr.Button("Make Changes in Equation", visible=False) # Markdown component to display step-by-step solution steps_md = gr.Markdown() # Plot component to display the polynomial graph plot_output = gr.Plot() # Textbox to display errors (initially hidden) error_box = gr.Textbox(visible=False) # Function to preview the polynomial equation based on user input def preview_polynomial(degree, coeff_string, real_only): try: coeffs = list(map(float, coeff_string.strip().split())) if len(coeffs) != degree + 1: return f"⚠️ Please enter exactly {degree + 1} coefficients.", gr.update(visible=False), gr.update(visible=False), "", None poly = sum([coeffs[i] * x**(degree - i) for i in range(degree + 1)]) eq_latex = f"### ✅ Confirm Polynomial\n\n$$ {sp.latex(poly)} = 0 $$" return eq_latex, gr.update(visible=True), gr.update(visible=True), "", None except Exception as e: return f"❌ Error parsing coefficients: {e}", gr.update(visible=False), gr.update(visible=False), "", None # Event handler for preview button click preview_poly_button.click( fn=preview_polynomial, inputs=[degree_slider, coeff_input, real_checkbox], outputs=[poly_equation_display, confirm_poly_btn, cancel_poly_btn, steps_md, plot_output] ) # Function to handle cancellation of the preview def cancel_poly(): return gr.update(visible=False), gr.update(visible=False), "", "", None # Event handler for cancel button click cancel_poly_btn.click( fn=cancel_poly, inputs=[], outputs=[confirm_poly_btn, cancel_poly_btn, poly_equation_display, steps_md, plot_output] ) # Event handler for confirm button click to solve and display results confirm_poly_btn.click( fn=solve_polynomial, inputs=[degree_slider, coeff_input, real_checkbox], outputs=[steps_md, plot_output, error_box] ) # Event handler to update the template when the degree slider changes degree_slider.change(fn=generate_polynomial_template, inputs=degree_slider, outputs=template_display) # Event handler to load an example when the example button is clicked example_btn.click(fn=load_poly_example, inputs=degree_slider, outputs=coeff_input) # Initialize the template display with the default degree (2) on load template_display.value = generate_polynomial_template(2) # ✅ NEW: LLM explanation section llm_button = gr.Button("Explain with LLM") llm_output = gr.Textbox(label="LLM Explanation", lines=4) llm_button.click(fn=explain_with_llm, inputs=coeff_input, outputs=llm_output) return template_display, real_checkbox, degree_slider, coeff_input, example_btn, preview_poly_button, poly_equation_display, confirm_poly_btn, cancel_poly_btn, steps_md, plot_output, error_box