Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,29 +1,20 @@
|
|
| 1 |
-
import subprocess
|
| 2 |
-
subprocess.run(
|
| 3 |
-
'pip install flash-attn --no-build-isolation',
|
| 4 |
-
env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"},
|
| 5 |
-
shell=True
|
| 6 |
-
)
|
| 7 |
import os
|
| 8 |
import time
|
| 9 |
import spaces
|
| 10 |
import torch
|
| 11 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 12 |
import gradio as gr
|
|
|
|
| 13 |
|
| 14 |
-
MODEL_LIST = ["
|
| 15 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
| 16 |
-
|
| 17 |
-
MODEL_NAME = MODEL_ID.split("/")[-1]
|
| 18 |
|
| 19 |
-
TITLE = "<h1><center>
|
| 20 |
|
| 21 |
-
DESCRIPTION = f"""
|
| 22 |
-
<h3>MODEL NOW: <a href="https://hf.co/{MODEL_ID}">{MODEL_NAME}</a></h3>
|
| 23 |
-
"""
|
| 24 |
PLACEHOLDER = """
|
| 25 |
<center>
|
| 26 |
-
<p>
|
| 27 |
</center>
|
| 28 |
"""
|
| 29 |
|
|
@@ -40,14 +31,19 @@ h3 {
|
|
| 40 |
}
|
| 41 |
"""
|
| 42 |
|
|
|
|
|
|
|
|
|
|
| 43 |
model = AutoModelForCausalLM.from_pretrained(
|
| 44 |
-
|
| 45 |
-
torch_dtype=torch.
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
-
model = model.eval()
|
| 51 |
|
| 52 |
@spaces.GPU()
|
| 53 |
def stream_chat(
|
|
@@ -57,28 +53,49 @@ def stream_chat(
|
|
| 57 |
max_new_tokens: int = 1024,
|
| 58 |
top_p: float = 1.0,
|
| 59 |
top_k: int = 20,
|
| 60 |
-
penalty: float = 1.2
|
| 61 |
):
|
| 62 |
print(f'message: {message}')
|
| 63 |
print(f'history: {history}')
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
max_new_tokens = max_new_tokens,
|
| 69 |
do_sample = False if temperature == 0 else True,
|
| 70 |
top_p = top_p,
|
| 71 |
top_k = top_k,
|
| 72 |
temperature = temperature,
|
| 73 |
-
|
| 74 |
-
|
|
|
|
| 75 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
|
|
|
|
| 77 |
chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER)
|
| 78 |
|
| 79 |
with gr.Blocks(css=CSS, theme="soft") as demo:
|
| 80 |
gr.HTML(TITLE)
|
| 81 |
-
gr.HTML(DESCRIPTION)
|
| 82 |
gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
|
| 83 |
gr.ChatInterface(
|
| 84 |
fn=stream_chat,
|
|
@@ -99,7 +116,7 @@ with gr.Blocks(css=CSS, theme="soft") as demo:
|
|
| 99 |
maximum=8192,
|
| 100 |
step=1,
|
| 101 |
value=1024,
|
| 102 |
-
label="Max
|
| 103 |
render=False,
|
| 104 |
),
|
| 105 |
gr.Slider(
|
|
@@ -138,4 +155,4 @@ with gr.Blocks(css=CSS, theme="soft") as demo:
|
|
| 138 |
|
| 139 |
|
| 140 |
if __name__ == "__main__":
|
| 141 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import time
|
| 3 |
import spaces
|
| 4 |
import torch
|
| 5 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
| 6 |
import gradio as gr
|
| 7 |
+
from threading import Thread
|
| 8 |
|
| 9 |
+
MODEL_LIST = ["meta-llama/Meta-Llama-3.1-8B-Instruct"]
|
| 10 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
| 11 |
+
MODEL = os.environ.get("MODEL_ID")
|
|
|
|
| 12 |
|
| 13 |
+
TITLE = "<h1><center>Mistral-Nemo</center></h1>"
|
| 14 |
|
|
|
|
|
|
|
|
|
|
| 15 |
PLACEHOLDER = """
|
| 16 |
<center>
|
| 17 |
+
<p>Hi! How can I help you today?</p>
|
| 18 |
</center>
|
| 19 |
"""
|
| 20 |
|
|
|
|
| 31 |
}
|
| 32 |
"""
|
| 33 |
|
| 34 |
+
device = "cuda" # for GPU usage or "cpu" for CPU usage
|
| 35 |
+
|
| 36 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
| 37 |
model = AutoModelForCausalLM.from_pretrained(
|
| 38 |
+
MODEL,
|
| 39 |
+
torch_dtype=torch.bfloat16,
|
| 40 |
+
device_map="auto",
|
| 41 |
+
ignore_mismatched_sizes=True)
|
| 42 |
+
terminators = [
|
| 43 |
+
tokenizer.eos_token_id,
|
| 44 |
+
tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
| 45 |
+
]
|
| 46 |
|
|
|
|
| 47 |
|
| 48 |
@spaces.GPU()
|
| 49 |
def stream_chat(
|
|
|
|
| 53 |
max_new_tokens: int = 1024,
|
| 54 |
top_p: float = 1.0,
|
| 55 |
top_k: int = 20,
|
| 56 |
+
penalty: float = 1.2,
|
| 57 |
):
|
| 58 |
print(f'message: {message}')
|
| 59 |
print(f'history: {history}')
|
| 60 |
+
|
| 61 |
+
conversation = []
|
| 62 |
+
for prompt, answer in history:
|
| 63 |
+
conversation.extend([
|
| 64 |
+
{"role": "user", "content": prompt},
|
| 65 |
+
{"role": "assistant", "content": answer},
|
| 66 |
+
])
|
| 67 |
+
|
| 68 |
+
conversation.append({"role": "user", "content": message})
|
| 69 |
+
|
| 70 |
+
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to(model.device)
|
| 71 |
+
|
| 72 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
|
| 73 |
+
|
| 74 |
+
generate_kwargs = dict(
|
| 75 |
+
input_ids=input_ids,
|
| 76 |
max_new_tokens = max_new_tokens,
|
| 77 |
do_sample = False if temperature == 0 else True,
|
| 78 |
top_p = top_p,
|
| 79 |
top_k = top_k,
|
| 80 |
temperature = temperature,
|
| 81 |
+
eos_token_id=terminators,
|
| 82 |
+
streamer=streamer,
|
| 83 |
+
)
|
| 84 |
|
| 85 |
+
with torch.no_grad():
|
| 86 |
+
thread = Thread(target=model.generate, kwargs=generate_kwargs)
|
| 87 |
+
thread.start()
|
| 88 |
+
|
| 89 |
+
buffer = ""
|
| 90 |
+
for new_text in streamer:
|
| 91 |
+
buffer += new_text
|
| 92 |
+
yield buffer
|
| 93 |
|
| 94 |
+
|
| 95 |
chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER)
|
| 96 |
|
| 97 |
with gr.Blocks(css=CSS, theme="soft") as demo:
|
| 98 |
gr.HTML(TITLE)
|
|
|
|
| 99 |
gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
|
| 100 |
gr.ChatInterface(
|
| 101 |
fn=stream_chat,
|
|
|
|
| 116 |
maximum=8192,
|
| 117 |
step=1,
|
| 118 |
value=1024,
|
| 119 |
+
label="Max new tokens",
|
| 120 |
render=False,
|
| 121 |
),
|
| 122 |
gr.Slider(
|
|
|
|
| 155 |
|
| 156 |
|
| 157 |
if __name__ == "__main__":
|
| 158 |
+
demo.launch()
|