import os import threading import gradio as gr from transformers import ( AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, ) # Define your models MODEL_PATHS = { "LeCarnet-3M": "MaxLSB/LeCarnet-3M", "LeCarnet-8M": "MaxLSB/LeCarnet-8M", "LeCarnet-21M": "MaxLSB/LeCarnet-21M", } # Add your Hugging Face token hf_token = os.environ.get("HUGGINGFACEHUB_API_TOKEN") if not hf_token: raise ValueError("HUGGINGFACEHUB_API_TOKEN environment variable not set.") # Load tokenizers & models - only load one initially tokenizer = None model = None def load_model(model_name): """Loads the specified model and tokenizer.""" global tokenizer, model if model_name not in MODEL_PATHS: raise ValueError(f"Unknown model: {model_name}") print(f"Loading {model_name}...") tokenizer = AutoTokenizer.from_pretrained(MODEL_PATHS[model_name], token=hf_token) model = AutoModelForCausalLM.from_pretrained(MODEL_PATHS[model_name], token=hf_token) model.eval() print(f"{model_name} loaded.") # Initial model load initial_model = list(MODEL_PATHS.keys())[0] load_model(initial_model) def respond( prompt: str, chat_history, model_choice: str, max_tokens: int, temperature: float, top_p: float, ): global tokenizer, model # Reload model if it's not the currently loaded one if model.config._name_or_path != MODEL_PATHS[model_choice]: load_model(model_choice) inputs = tokenizer(prompt, return_tensors="pt") streamer = TextIteratorStreamer( tokenizer, skip_prompt=False, skip_special_tokens=True, ) generate_kwargs = dict( **inputs, streamer=streamer, max_new_tokens=max_tokens, do_sample=True, temperature=temperature, top_p=top_p, eos_token_id=tokenizer.eos_token_id, ) thread = threading.Thread(target=model.generate, kwargs=generate_kwargs) thread.start() accumulated = "" for new_text in streamer: accumulated += new_text yield accumulated # --- Gradio Interface --- # CSS for the custom logo and layout css = """ .gradio-container { padding: 0 !important; } .gradio-container > main.fillable { padding: 0 !important; } #chatbot { height: calc(100vh - 21px - 16px); max-height: 1500px; } #chatbot .chatbot-conversations { height: 100vh; background-color: var(--ms-gr-ant-color-bg-layout); padding-left: 4px; padding-right: 4px; } #chatbot .chatbot-conversations .chatbot-conversations-list { padding-left: 0; padding-right: 0; } #chatbot .chatbot-chat { padding: 32px; padding-bottom: 0; height: 100%; } @media (max-width: 768px) { #chatbot .chatbot-chat { padding: 0; } } #chatbot .chatbot-chat .chatbot-chat-messages { flex: 1; } .logo-container { display: flex; justify-content: center; padding: 10px; } .logo-container img { max-width: 80%; /* Adjust as needed */ height: auto; } """ with gr.Blocks(css=css, fill_width=True) as demo: with gr.Column(elem_id="chatbot", variant="panel"): # Custom Logo with gr.Row(elem_classes="logo-container"): gr.Image( value="media/le-carnet.png", # Replace with the path to your image file label="LeCarnet Logo", interactive=False, show_label=False, show_download_button=False, height=100 # Adjust height as needed ) gr.Markdown( """ # LeCarnet AI Assistant Type the beginning of a sentence and watch the model finish it. """ ) with gr.Row(): with gr.Column(scale=1): model_dropdown = gr.Dropdown( choices=list(MODEL_PATHS.keys()), value=initial_model, label="Choose Model", interactive=True ) max_tokens_slider = gr.Slider( 1, 512, value=512, step=1, label="Max new tokens" ) temperature_slider = gr.Slider( 0.1, 2.0, value=0.7, step=0.1, label="Temperature" ) top_p_slider = gr.Slider( 0.1, 1.0, value=0.9, step=0.05, label="Top‑p" ) with gr.Column(scale=3): chatbot = gr.ChatInterface( fn=respond, additional_inputs=[ model_dropdown, max_tokens_slider, temperature_slider, top_p_slider, ], examples=[ ["Il était une fois un petit garçon qui vivait dans un village paisible."], ["Il était une fois une grenouille qui rêvait de toucher les étoiles chaque nuit depuis son étang."], ["Il était une fois un petit lapin perdu"], ], cache_examples=False, submit_btn="Generate", ) if __name__ == "__main__": demo.queue() demo.launch()