MaxiiMin's picture
Create app.py
ac52ed4 verified
raw
history blame
1.32 kB
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "Qwen/Qwen2.5-0.5B"
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
def highlight_probabilities(text):
inputs = tokenizer([text], return_tensors="pt").input_ids.to(model.device)
inp, outp = inputs[:, :-1], inputs[:, 1:].unsqueeze(-1)
with torch.no_grad():
logits = model(inp).logits
probs = torch.softmax(logits, dim=-1)
chosen = torch.gather(probs, dim=2, index=outp).squeeze(-1).cpu().numpy()[0]
tokens = tokenizer.convert_ids_to_tokens(inp[0].cpu().tolist())
highlights = [
(tok.replace("Ġ", ""), float(p)) for tok, p in zip(tokens, chosen)
]
return highlights
with gr.Blocks() as demo:
gr.Markdown("## Token-by-Token Probability Highlighter")
txt = gr.Textbox(
label="Input Text",
placeholder="Type or paste any text here…" ,
lines=4
)
highlighted = gr.HighlightedText(
label="Token Probabilities",
combine_adjacent=True,
show_legend=True,
)
txt.change(
fn=highlight_probabilities,
inputs=txt,
outputs=highlighted
)
if __name__ == "__main__":
demo.launch()