Update app.py
Browse files
app.py
CHANGED
|
@@ -1,35 +1,39 @@
|
|
| 1 |
import re
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
|
| 4 |
-
#
|
|
|
|
|
|
|
|
|
|
| 5 |
CATEGORIES = {
|
| 6 |
"Need": {
|
| 7 |
-
"Utilities": ["
|
| 8 |
-
"Housing": ["
|
| 9 |
-
"Groceries": ["
|
| 10 |
-
"Transportation": ["
|
| 11 |
-
"Education": ["
|
| 12 |
-
"Medical": ["
|
| 13 |
-
"Insurance": ["
|
| 14 |
-
"Childcare": ["
|
| 15 |
},
|
| 16 |
"Want": {
|
| 17 |
-
"Dining Out": ["
|
| 18 |
-
"Entertainment": ["
|
| 19 |
-
"Travel": ["
|
| 20 |
-
"Fitness": ["gym", "yoga", "
|
| 21 |
-
"Shopping": ["
|
| 22 |
-
"Hobbies": ["
|
| 23 |
-
"Personal Care": ["spa", "
|
| 24 |
},
|
| 25 |
"Saving/Investment": {
|
| 26 |
-
"Emergency Fund": ["
|
| 27 |
-
"Retirement": ["
|
| 28 |
-
"Investments": ["
|
| 29 |
-
"Debt Repayment": ["
|
| 30 |
-
"Education Fund": ["
|
| 31 |
-
"Savings for Goals": ["
|
| 32 |
-
"Health Savings": ["
|
| 33 |
}
|
| 34 |
}
|
| 35 |
|
|
@@ -37,38 +41,44 @@ CATEGORIES = {
|
|
| 37 |
def normalize_vietnamese(text):
|
| 38 |
return re.sub(r'[àáạảãâầấậẩẫăằắặẳẵèéẹẻẽêềếệểễìíịỉĩòóọỏõôồốộổỗơờớợởỡùúụủũưừứựửữỳýỵỷỹđ]', '', text).replace("đ", "d")
|
| 39 |
|
| 40 |
-
#
|
| 41 |
-
def
|
| 42 |
normalized_input = normalize_vietnamese(user_input.lower())
|
| 43 |
|
| 44 |
-
# Extract amount
|
| 45 |
amount_match = re.search(r"(\d+(\.\d{1,2})?)", normalized_input)
|
| 46 |
amount = amount_match.group(0) if amount_match else "Unknown"
|
| 47 |
|
| 48 |
-
#
|
|
|
|
|
|
|
|
|
|
| 49 |
for main_category, subcategories in CATEGORIES.items():
|
| 50 |
for subcategory, keywords in subcategories.items():
|
| 51 |
if any(keyword in normalized_input for keyword in keywords):
|
| 52 |
return {
|
| 53 |
"Main Category": main_category,
|
| 54 |
"Sub Category": subcategory,
|
| 55 |
-
"Amount": amount
|
|
|
|
| 56 |
}
|
| 57 |
|
| 58 |
-
# Default response
|
| 59 |
return {
|
| 60 |
"Main Category": "Uncategorized",
|
| 61 |
"Sub Category": "Unknown",
|
| 62 |
-
"Amount": amount
|
|
|
|
| 63 |
}
|
| 64 |
|
| 65 |
-
#
|
| 66 |
def process_user_input(user_input):
|
| 67 |
-
result =
|
| 68 |
return (
|
| 69 |
f"Main Category: {result['Main Category']}\n"
|
| 70 |
f"Sub Category: {result['Sub Category']}\n"
|
| 71 |
-
f"Amount: {result['Amount']}"
|
|
|
|
| 72 |
)
|
| 73 |
|
| 74 |
iface = gr.Interface(
|
|
@@ -76,7 +86,7 @@ iface = gr.Interface(
|
|
| 76 |
inputs="text",
|
| 77 |
outputs="text",
|
| 78 |
title="Expenditure Classifier",
|
| 79 |
-
description="Classify expenditures into main and subcategories (Need, Want, Saving/Investment)
|
| 80 |
)
|
| 81 |
|
| 82 |
iface.launch()
|
|
|
|
| 1 |
import re
|
| 2 |
+
from transformers import pipeline
|
| 3 |
import gradio as gr
|
| 4 |
|
| 5 |
+
# Load a pre-trained multilingual NER model for entity recognition
|
| 6 |
+
ner_model = pipeline("ner", model="dbmdz/bert-base-multilingual-cased", aggregation_strategy="simple")
|
| 7 |
+
|
| 8 |
+
# Define categories and their associated keywords
|
| 9 |
CATEGORIES = {
|
| 10 |
"Need": {
|
| 11 |
+
"Utilities": ["dien", "nuoc", "gas", "internet", "dienthoai"],
|
| 12 |
+
"Housing": ["nha", "thue", "sua chua", "sua nha"],
|
| 13 |
+
"Groceries": ["thuc pham", "sieu thi", "rau cu", "do an"],
|
| 14 |
+
"Transportation": ["xang", "xe", "ve xe", "bao duong"],
|
| 15 |
+
"Education": ["hoc phi", "sach", "truong", "khoa hoc"],
|
| 16 |
+
"Medical": ["bao hiem", "bac si", "thuoc"],
|
| 17 |
+
"Insurance": ["bao hiem", "nha", "oto", "suc khoe"],
|
| 18 |
+
"Childcare": ["tre em", "truong mam non", "nguoi giup viec"],
|
| 19 |
},
|
| 20 |
"Want": {
|
| 21 |
+
"Dining Out": ["nha hang", "quan an", "cafe", "tra sua"],
|
| 22 |
+
"Entertainment": ["phim", "karaoke", "game", "nhac"],
|
| 23 |
+
"Travel": ["du lich", "ve may bay", "khach san"],
|
| 24 |
+
"Fitness": ["gym", "yoga", "the thao"],
|
| 25 |
+
"Shopping": ["quan ao", "phu kien", "dien thoai", "luxury"],
|
| 26 |
+
"Hobbies": ["so thich", "do choi", "my thuat"],
|
| 27 |
+
"Personal Care": ["spa", "toc", "lam dep", "my pham"],
|
| 28 |
},
|
| 29 |
"Saving/Investment": {
|
| 30 |
+
"Emergency Fund": ["quy du phong"],
|
| 31 |
+
"Retirement": ["nghi huu"],
|
| 32 |
+
"Investments": ["chung khoan", "bat dong san"],
|
| 33 |
+
"Debt Repayment": ["tra no"],
|
| 34 |
+
"Education Fund": ["quy hoc tap"],
|
| 35 |
+
"Savings for Goals": ["quy tiet kiem"],
|
| 36 |
+
"Health Savings": ["bao hiem y te"],
|
| 37 |
}
|
| 38 |
}
|
| 39 |
|
|
|
|
| 41 |
def normalize_vietnamese(text):
|
| 42 |
return re.sub(r'[àáạảãâầấậẩẫăằắặẳẵèéẹẻẽêềếệểễìíịỉĩòóọỏõôồốộổỗơờớợởỡùúụủũưừứựửữỳýỵỷỹđ]', '', text).replace("đ", "d")
|
| 43 |
|
| 44 |
+
# Extract entities and classify
|
| 45 |
+
def classify_and_extract(user_input):
|
| 46 |
normalized_input = normalize_vietnamese(user_input.lower())
|
| 47 |
|
| 48 |
+
# Extract amount using regex
|
| 49 |
amount_match = re.search(r"(\d+(\.\d{1,2})?)", normalized_input)
|
| 50 |
amount = amount_match.group(0) if amount_match else "Unknown"
|
| 51 |
|
| 52 |
+
# Run the NER model to detect entities
|
| 53 |
+
ner_results = ner_model(user_input)
|
| 54 |
+
|
| 55 |
+
# Match keywords for categories
|
| 56 |
for main_category, subcategories in CATEGORIES.items():
|
| 57 |
for subcategory, keywords in subcategories.items():
|
| 58 |
if any(keyword in normalized_input for keyword in keywords):
|
| 59 |
return {
|
| 60 |
"Main Category": main_category,
|
| 61 |
"Sub Category": subcategory,
|
| 62 |
+
"Amount": amount,
|
| 63 |
+
"Entities": ner_results,
|
| 64 |
}
|
| 65 |
|
| 66 |
+
# Default response if no match
|
| 67 |
return {
|
| 68 |
"Main Category": "Uncategorized",
|
| 69 |
"Sub Category": "Unknown",
|
| 70 |
+
"Amount": amount,
|
| 71 |
+
"Entities": ner_results,
|
| 72 |
}
|
| 73 |
|
| 74 |
+
# Gradio interface
|
| 75 |
def process_user_input(user_input):
|
| 76 |
+
result = classify_and_extract(user_input)
|
| 77 |
return (
|
| 78 |
f"Main Category: {result['Main Category']}\n"
|
| 79 |
f"Sub Category: {result['Sub Category']}\n"
|
| 80 |
+
f"Amount: {result['Amount']}\n"
|
| 81 |
+
f"Entities: {result['Entities']}"
|
| 82 |
)
|
| 83 |
|
| 84 |
iface = gr.Interface(
|
|
|
|
| 86 |
inputs="text",
|
| 87 |
outputs="text",
|
| 88 |
title="Expenditure Classifier",
|
| 89 |
+
description="Classify expenditures into main and subcategories (Need, Want, Saving/Investment) and extract amounts."
|
| 90 |
)
|
| 91 |
|
| 92 |
iface.launch()
|