Spaces:
Running
Running
File size: 17,534 Bytes
dbd510a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 |
"""
Contains functions to execute the main image generation stages:
1. OpenPose Detection: Extracts pose information.
2. Low-Resolution Generation: Creates initial image using Pose ControlNet.
3. High-Resolution Tiling: Upscales the low-res image using Tile ControlNet.
Manages dynamic loading/unloading of diffusion pipelines to conserve VRAM.
"""
import torch
import gc
import time
import os
from PIL import Image
from tqdm.auto import tqdm
import gradio as gr
from diffusers import (
StableDiffusionControlNetImg2ImgPipeline,
UniPCMultistepScheduler,
)
from model_loader import (
get_openpose_detector,
get_controlnet_pose,
get_controlnet_tile,
get_device,
get_dtype,
are_models_loaded,
)
from image_utils import create_blend_mask
from prompts import get_prompts_for_run
# --- Configuration ---
BASE_MODEL_ID = "runwayml/stable-diffusion-v1-5"
LORA_DIR = "loras"
LORA_FILES = {
"style": os.path.join(LORA_DIR, "night_comic_V06.safetensors"),
"detail": os.path.join(LORA_DIR, "add_detail.safetensors"),
}
LORA_WEIGHTS_LOWRES = [1, 1]
LORA_WEIGHTS_HIRES = [1, 2]
ACTIVE_ADAPTERS = ["style", "detail"]
def cleanup_memory():
"""Forces garbage collection and clears CUDA cache."""
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
# --- Stage 1: OpenPose Detection ---
def run_pose_detection(resized_input_image):
"""
Detects human pose (body, hands, face) from the input image using OpenPose.
Temporarily moves the OpenPose detector model to the active GPU (if available)
for processing and then moves it back to the CPU to conserve VRAM.
Args:
input_image_resized (PIL.Image.Image): The input image, already resized
and in RGB format.
Returns:
PIL.Image.Image | None: A PIL Image representing the detected pose map,
or None if detection fails or models aren't loaded.
"""
if not are_models_loaded():
print("Error: Cannot run pose detection, models not loaded.")
return None
detector = get_openpose_detector()
device = get_device()
control_image_openpose = None
if detector is None:
print("Error: OpenPose detector is None.")
return None
try:
detector.to(device)
cleanup_memory()
control_image_openpose = detector(
resized_input_image, include_face=True, include_hand=True
)
except Exception as e:
print(f"ERROR during OpenPose detection: {e}")
control_image_openpose = None
finally:
detector.to("cpu")
cleanup_memory()
return control_image_openpose
# --- Stage 2: Low-Resolution Generation ---
def run_low_res_generation(
resized_input_image,
pose_map,
seed,
steps,
guidance_scale,
strength,
controlnet_scale=0.8,
progress=gr.Progress(track_tqdm=True)
):
"""
Generates the initial low-resolution image using Img2Img with Pose ControlNet.
Dynamically loads the StableDiffusionControlNetImg2ImgPipeline, applies LoRAs,
runs inference, and then unloads the pipeline to free VRAM before returning.
Args:
input_image_resized (PIL.Image.Image): The resized input image.
pose_map (PIL.Image.Image): The pose map generated by run_pose_detection.
seed (int): The random seed for generation.
steps (int): Number of diffusion inference steps.
guidance_scale (float): Classifier-free guidance scale.
strength (float): Img2Img strength (0.0 to 1.0). How much noise to add.
controlnet_scale (float): Conditioning scale for the Pose ControlNet.
progress (gr.Progress): Gradio progress object for UI updates.
Returns:
PIL.Image.Image | None: The generated low-resolution PIL Image, or None if an error occurs.
Raises:
gr.Error: Raises a Gradio error if generation fails catastrophically.
"""
if not are_models_loaded() or pose_map is None:
error_msg = "Cannot run low-res generation: "
if not are_models_loaded(): error_msg += "Models not loaded. "
if pose_map is None: error_msg += "Pose map is missing."
print(f"Error: {error_msg}")
return None
device = get_device()
dtype = get_dtype()
controlnet_pose = get_controlnet_pose()
output_image_lowres = None
pipe_lowres = None
positive_prompt, negative_prompt, _, _ = get_prompts_for_run()
generator = torch.Generator(device=device).manual_seed(int(seed))
progress(0, desc="Loading Low-Res Pipeline...")
try:
# 1. Load Pipeline
pipe_lowres = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
BASE_MODEL_ID,
controlnet=controlnet_pose,
torch_dtype=dtype,
safety_checker=None
)
pipe_lowres.scheduler = UniPCMultistepScheduler.from_config(pipe_lowres.scheduler.config)
pipe_lowres.to(device)
cleanup_memory()
# 2. Load LoRAs
if os.path.exists(LORA_FILES["style"]) and os.path.exists(LORA_FILES["detail"]):
pipe_lowres.load_lora_weights(LORA_FILES["style"], adapter_name="style")
pipe_lowres.load_lora_weights(LORA_FILES["detail"], adapter_name="detail")
pipe_lowres.set_adapters(ACTIVE_ADAPTERS, adapter_weights=LORA_WEIGHTS_LOWRES)
print(f"Activated LoRAs: {ACTIVE_ADAPTERS} with weights {LORA_WEIGHTS_LOWRES}")
else:
print("Warning: One or both LoRA files not found. Skipping LoRA loading.")
raise gr.Error("Required LoRA files not found in loras/ directory.")
# 3. Run Inference
progress(0.3, desc="Generating Low-Res Image...")
output_image_low_res = pipe_lowres(
prompt=positive_prompt,
negative_prompt=negative_prompt,
image=resized_input_image,
control_image=pose_map,
num_inference_steps=int(steps),
strength=strength,
guidance_scale=guidance_scale,
controlnet_conditioning_scale=float(controlnet_scale),
generator=generator,
).images[0]
progress(0.9, desc="Low-Res Complete")
except Exception as e:
print(f"ERROR during Low-Res Generation Pipeline: {e}")
import traceback
traceback.print_exc()
output_image_low_res = None
raise gr.Error(f"Failed during low-res generation: {e}")
finally:
# 4. Cleanup Pipeline
print("Cleaning up Low-Res pipeline...")
if pipe_lowres is not None:
try:
if hasattr(pipe_lowres, 'get_active_adapters') and pipe_lowres.get_active_adapters():
print("Unloading LoRAs...")
pipe_lowres.unload_lora_weights()
except Exception as unload_e:
print(f"Note: Error unloading LoRAs: {unload_e}")
print("Moving Low-Res pipe components to CPU before deleting...")
try: pipe_lowres.to('cpu')
except Exception as cpu_e: print(f"Note: Error moving pipe to CPU: {cpu_e}")
print("Deleting Low-Res pipeline object...")
del pipe_lowres
pipe_lowres = None
print("Running garbage collection and emptying CUDA cache after Low-Res...")
cleanup_memory()
# time.sleep(1)
print("--- Low-Res Generation Stage Finished ---")
return output_image_low_res
# --- Stage 3: High-Resolution Tiling Upscaling ---
def run_hires_tiling(
low_res_image,
seed,
steps,
guidance_scale,
strength,
controlnet_scale=1.0,
upscale_factor=2,
tile_size=1024,
tile_stride=1024,
progress=gr.Progress(track_tqdm=True)
):
"""
Upscales the low-resolution image using tiling with the Tile ControlNet.
Dynamically loads the StableDiffusionControlNetImg2ImgPipeline for tiling,
applies LoRAs, processes the image in overlapping tiles, blends the results,
and unloads the pipeline to free VRAM.
Args:
low_res_image (PIL.Image.Image): The low-resolution image from the previous stage.
seed (int): The random seed (should ideally match low-res stage seed).
steps (int): Number of diffusion inference steps per tile.
guidance_scale (float): Classifier-free guidance scale for tiles.
strength (float): Img2Img strength for tiling (controls detail vs. original).
controlnet_scale (float): Conditioning scale for the Tile ControlNet.
upscale_factor (int): Factor by which to increase the image resolution.
tile_size (int): Size of the square tiles to process.
tile_stride (int): Step size between tiles. Overlap = tile_size - tile_stride.
progress (gr.Progress): Gradio progress object for UI updates.
Returns:
PIL.Image.Image | None: The generated high-resolution PIL Image, or None if an error occurs.
Raises:
gr.Error: Raises a Gradio error if tiling fails catastrophically.
"""
if not are_models_loaded() or low_res_image is None:
error_msg = "Cannot run hi-res tiling: "
if not are_models_loaded(): error_msg += "Models not loaded. "
if low_res_image is None: error_msg += "Low-res image is missing."
print(f"Error: {error_msg}")
return None
device = get_device()
dtype = get_dtype()
controlnet_tile = get_controlnet_tile()
high_res_output_image = None
pipe_hires = None
_, _, positive_prompt_tile, negative_prompt_tile = get_prompts_for_run()
generator_tile = torch.Generator(device=device).manual_seed(int(seed))
print("\n--- Starting Hi-Res Tiling Stage ---")
progress(0, desc="Preparing for Tiling...")
try:
# --- Setup Tiling Parameters ---
target_width = low_res_image.width * upscale_factor
target_height = low_res_image.height * upscale_factor
if tile_size > min(target_width, target_height):
print(f"Warning: Tile size ({tile_size}) > target dimension ({target_width}x{target_height}). Clamping tile size.")
tile_size = min(target_width, target_height)
tile_stride = tile_size
overlap = tile_size - tile_stride
if overlap < 0:
print("Warning: Tile stride is larger than tile size. Setting stride = tile size.")
tile_stride = tile_size
overlap = 0
print(f"Target Res: {target_width}x{target_height}, Tile Size: {tile_size}, Stride: {tile_stride}, Overlap: {overlap}")
# 1. Load Pipeline
print(f"Loading Hi-Res Pipeline ({BASE_MODEL_ID} + Tile ControlNet)...")
progress(0.05, desc="Loading Hi-Res Pipeline...")
pipe_hires = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
BASE_MODEL_ID,
controlnet=controlnet_tile,
torch_dtype=dtype,
safety_checker=None,
)
pipe_hires.scheduler = UniPCMultistepScheduler.from_config(pipe_hires.scheduler.config)
pipe_hires.to(device)
# pipe_hires.enable_model_cpu_offload()
# pipe_hires.enable_xformers_memory_efficient_attention()
print("Hi-Res Pipeline loaded to GPU.")
cleanup_memory()
# 2. Load LoRAs
print("Loading LoRAs for Hi-Res pipe...")
if os.path.exists(LORA_FILES["style"]) and os.path.exists(LORA_FILES["detail"]):
pipe_hires.load_lora_weights(LORA_FILES["style"], adapter_name="style")
pipe_hires.load_lora_weights(LORA_FILES["detail"], adapter_name="detail")
pipe_hires.set_adapters(ACTIVE_ADAPTERS, adapter_weights=LORA_WEIGHTS_HIRES)
print(f"Activated LoRAs: {ACTIVE_ADAPTERS} with weights {LORA_WEIGHTS_HIRES}")
else:
print("Warning: One or both LoRA files not found. Skipping LoRA loading.")
raise gr.Error("Required LoRA files not found in loras/ directory.")
# --- Prepare for Tiling Loop ---
print(f"Creating blurry base image ({target_width}x{target_height})...")
progress(0.15, desc="Preparing Base Image...")
blurry_high_res = low_res_image.resize((target_width, target_height), Image.LANCZOS)
final_image = Image.new("RGB", (target_width, target_height))
blend_mask = create_blend_mask(tile_size, overlap)
num_tiles_x = (target_width + tile_stride - 1) // tile_stride
num_tiles_y = (target_height + tile_stride - 1) // tile_stride
total_tiles = num_tiles_x * num_tiles_y
print(f"Processing {num_tiles_x}x{num_tiles_y} = {total_tiles} tiles...")
# --- Tiling Loop ---
progress(0.2, desc=f"Processing Tiles (0/{total_tiles})")
processed_tile_count = 0
with tqdm(total=total_tiles, desc="Tiling Upscale") as pbar:
for y in range(num_tiles_y):
for x in range(num_tiles_x):
tile_start_time = time.time()
pbar.set_description(f"Tiling Upscale (Tile {processed_tile_count+1}/{total_tiles})")
x_start = x * tile_stride
y_start = y * tile_stride
x_end = min(x_start + tile_size, target_width)
y_end = min(y_start + tile_size, target_height)
crop_box = (x_start, y_start, x_end, y_end)
tile_image_blurry = blurry_high_res.crop(crop_box)
current_tile_width, current_tile_height = tile_image_blurry.size
if current_tile_width < tile_size or current_tile_height < tile_size:
try: edge_color = tile_image_blurry.getpixel((0, 0))
except IndexError: edge_color = (127, 127, 127)
padded_tile = Image.new("RGB", (tile_size, tile_size), edge_color)
padded_tile.paste(tile_image_blurry, (0, 0))
tile_image_blurry = padded_tile
print(f"Padded edge tile at ({x},{y})")
# 3. Run Inference on the Tile
with torch.inference_mode():
output_tile = pipe_hires(
prompt=positive_prompt_tile,
negative_prompt=negative_prompt_tile,
image=tile_image_blurry,
control_image=tile_image_blurry,
num_inference_steps=int(steps),
strength=strength,
guidance_scale=guidance_scale,
controlnet_conditioning_scale=float(controlnet_scale),
generator=generator_tile,
output_type="pil"
).images[0]
# --- Stitch Tile Back ---
paste_x = x_start
paste_y = y_start
crop_w = x_end - x_start
crop_h = y_end - y_start
output_tile_region = output_tile.crop((0, 0, crop_w, crop_h))
if overlap > 0:
blend_mask_region = blend_mask.crop((0, 0, crop_w, crop_h))
current_content_region = final_image.crop((paste_x, paste_y, paste_x + crop_w, paste_y + crop_h))
blended_tile_region = Image.composite(output_tile_region, current_content_region, blend_mask_region)
final_image.paste(blended_tile_region, (paste_x, paste_y))
else:
final_image.paste(output_tile_region, (paste_x, paste_y))
processed_tile_count += 1
pbar.update(1)
# Update Gradio progress
gradio_progress = 0.2 + 0.75 * (processed_tile_count / total_tiles)
progress(gradio_progress, desc=f"Processing Tile {processed_tile_count}/{total_tiles}")
tile_end_time = time.time()
print(f"Tile ({x},{y}) processed in {tile_end_time - tile_start_time:.2f}s")
# cleanup_memory()
print("Tile processing complete.")
high_res_output_image = final_image
progress(0.95, desc="Tiling Complete")
except Exception as e:
print(f"ERROR during Hi-Res Tiling Pipeline: {e}")
import traceback
traceback.print_exc()
high_res_output_image = None
raise gr.Error(f"Failed during hi-res tiling: {e}")
finally:
# 4. Cleanup Pipeline
print("Cleaning up Hi-Res pipeline...")
if pipe_hires is not None:
try:
if hasattr(pipe_hires, 'get_active_adapters') and pipe_hires.get_active_adapters():
print("Unloading LoRAs...")
pipe_hires.unload_lora_weights()
except Exception as unload_e:
print(f"Note: Error unloading LoRAs: {unload_e}")
print("Moving Hi-Res pipe components to CPU before deleting...")
try: pipe_hires.to('cpu')
except Exception as cpu_e: print(f"Note: Error moving pipe to CPU: {cpu_e}")
print("Deleting Hi-Res pipeline object...")
del pipe_hires
pipe_hires = None
print("Running garbage collection and emptying CUDA cache after Hi-Res...")
cleanup_memory()
print("--- Hi-Res Tiling Stage Finished ---")
return high_res_output_image
|