Spaces:
Running
Running
""" | |
Contains functions to execute the main image generation stages: | |
1. OpenPose Detection: Extracts pose information. | |
2. Low-Resolution Generation: Creates initial image using Pose ControlNet. | |
3. High-Resolution Tiling: Upscales the low-res image using Tile ControlNet. | |
Manages dynamic loading/unloading of diffusion pipelines to conserve VRAM. | |
""" | |
import torch | |
import gc | |
import time | |
import os | |
from PIL import Image | |
from tqdm.auto import tqdm | |
import gradio as gr | |
from diffusers import ( | |
StableDiffusionControlNetImg2ImgPipeline, | |
UniPCMultistepScheduler, | |
) | |
from model_loader import ( | |
get_openpose_detector, | |
get_controlnet_pose, | |
get_controlnet_tile, | |
get_device, | |
get_dtype, | |
are_models_loaded, | |
) | |
from image_utils import create_blend_mask | |
from prompts import get_prompts_for_run | |
# --- Configuration --- | |
BASE_MODEL_ID = "runwayml/stable-diffusion-v1-5" | |
LORA_DIR = "loras" | |
LORA_FILES = { | |
"style": os.path.join(LORA_DIR, "night_comic_V06.safetensors"), | |
"detail": os.path.join(LORA_DIR, "add_detail.safetensors"), | |
} | |
LORA_WEIGHTS_LOWRES = [1, 1] | |
LORA_WEIGHTS_HIRES = [1, 2] | |
ACTIVE_ADAPTERS = ["style", "detail"] | |
def cleanup_memory(): | |
"""Forces garbage collection and clears CUDA cache.""" | |
gc.collect() | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
# --- Stage 1: OpenPose Detection --- | |
def run_pose_detection(resized_input_image): | |
""" | |
Detects human pose (body, hands, face) from the input image using OpenPose. | |
Temporarily moves the OpenPose detector model to the active GPU (if available) | |
for processing and then moves it back to the CPU to conserve VRAM. | |
Args: | |
input_image_resized (PIL.Image.Image): The input image, already resized | |
and in RGB format. | |
Returns: | |
PIL.Image.Image | None: A PIL Image representing the detected pose map, | |
or None if detection fails or models aren't loaded. | |
""" | |
if not are_models_loaded(): | |
print("Error: Cannot run pose detection, models not loaded.") | |
return None | |
detector = get_openpose_detector() | |
device = get_device() | |
control_image_openpose = None | |
if detector is None: | |
print("Error: OpenPose detector is None.") | |
return None | |
try: | |
detector.to(device) | |
cleanup_memory() | |
control_image_openpose = detector( | |
resized_input_image, include_face=True, include_hand=True | |
) | |
except Exception as e: | |
print(f"ERROR during OpenPose detection: {e}") | |
control_image_openpose = None | |
finally: | |
detector.to("cpu") | |
cleanup_memory() | |
return control_image_openpose | |
# --- Stage 2: Low-Resolution Generation --- | |
def run_low_res_generation( | |
resized_input_image, | |
pose_map, | |
seed, | |
steps, | |
guidance_scale, | |
strength, | |
controlnet_scale=0.8, | |
progress=gr.Progress(track_tqdm=True) | |
): | |
""" | |
Generates the initial low-resolution image using Img2Img with Pose ControlNet. | |
Dynamically loads the StableDiffusionControlNetImg2ImgPipeline, applies LoRAs, | |
runs inference, and then unloads the pipeline to free VRAM before returning. | |
Args: | |
input_image_resized (PIL.Image.Image): The resized input image. | |
pose_map (PIL.Image.Image): The pose map generated by run_pose_detection. | |
seed (int): The random seed for generation. | |
steps (int): Number of diffusion inference steps. | |
guidance_scale (float): Classifier-free guidance scale. | |
strength (float): Img2Img strength (0.0 to 1.0). How much noise to add. | |
controlnet_scale (float): Conditioning scale for the Pose ControlNet. | |
progress (gr.Progress): Gradio progress object for UI updates. | |
Returns: | |
PIL.Image.Image | None: The generated low-resolution PIL Image, or None if an error occurs. | |
Raises: | |
gr.Error: Raises a Gradio error if generation fails catastrophically. | |
""" | |
if not are_models_loaded() or pose_map is None: | |
error_msg = "Cannot run low-res generation: " | |
if not are_models_loaded(): error_msg += "Models not loaded. " | |
if pose_map is None: error_msg += "Pose map is missing." | |
print(f"Error: {error_msg}") | |
return None | |
device = get_device() | |
dtype = get_dtype() | |
controlnet_pose = get_controlnet_pose() | |
output_image_lowres = None | |
pipe_lowres = None | |
positive_prompt, negative_prompt, _, _ = get_prompts_for_run() | |
generator = torch.Generator(device=device).manual_seed(int(seed)) | |
progress(0, desc="Loading Low-Res Pipeline...") | |
try: | |
# 1. Load Pipeline | |
pipe_lowres = StableDiffusionControlNetImg2ImgPipeline.from_pretrained( | |
BASE_MODEL_ID, | |
controlnet=controlnet_pose, | |
torch_dtype=dtype, | |
safety_checker=None | |
) | |
pipe_lowres.scheduler = UniPCMultistepScheduler.from_config(pipe_lowres.scheduler.config) | |
pipe_lowres.to(device) | |
cleanup_memory() | |
# 2. Load LoRAs | |
if os.path.exists(LORA_FILES["style"]) and os.path.exists(LORA_FILES["detail"]): | |
pipe_lowres.load_lora_weights(LORA_FILES["style"], adapter_name="style") | |
pipe_lowres.load_lora_weights(LORA_FILES["detail"], adapter_name="detail") | |
pipe_lowres.set_adapters(ACTIVE_ADAPTERS, adapter_weights=LORA_WEIGHTS_LOWRES) | |
print(f"Activated LoRAs: {ACTIVE_ADAPTERS} with weights {LORA_WEIGHTS_LOWRES}") | |
else: | |
print("Warning: One or both LoRA files not found. Skipping LoRA loading.") | |
raise gr.Error("Required LoRA files not found in loras/ directory.") | |
# 3. Run Inference | |
progress(0.3, desc="Generating Low-Res Image...") | |
output_image_low_res = pipe_lowres( | |
prompt=positive_prompt, | |
negative_prompt=negative_prompt, | |
image=resized_input_image, | |
control_image=pose_map, | |
num_inference_steps=int(steps), | |
strength=strength, | |
guidance_scale=guidance_scale, | |
controlnet_conditioning_scale=float(controlnet_scale), | |
generator=generator, | |
).images[0] | |
progress(0.9, desc="Low-Res Complete") | |
except Exception as e: | |
print(f"ERROR during Low-Res Generation Pipeline: {e}") | |
import traceback | |
traceback.print_exc() | |
output_image_low_res = None | |
raise gr.Error(f"Failed during low-res generation: {e}") | |
finally: | |
# 4. Cleanup Pipeline | |
print("Cleaning up Low-Res pipeline...") | |
if pipe_lowres is not None: | |
try: | |
if hasattr(pipe_lowres, 'get_active_adapters') and pipe_lowres.get_active_adapters(): | |
print("Unloading LoRAs...") | |
pipe_lowres.unload_lora_weights() | |
except Exception as unload_e: | |
print(f"Note: Error unloading LoRAs: {unload_e}") | |
print("Moving Low-Res pipe components to CPU before deleting...") | |
try: pipe_lowres.to('cpu') | |
except Exception as cpu_e: print(f"Note: Error moving pipe to CPU: {cpu_e}") | |
print("Deleting Low-Res pipeline object...") | |
del pipe_lowres | |
pipe_lowres = None | |
print("Running garbage collection and emptying CUDA cache after Low-Res...") | |
cleanup_memory() | |
# time.sleep(1) | |
print("--- Low-Res Generation Stage Finished ---") | |
return output_image_low_res | |
# --- Stage 3: High-Resolution Tiling Upscaling --- | |
def run_hires_tiling( | |
low_res_image, | |
seed, | |
steps, | |
guidance_scale, | |
strength, | |
controlnet_scale=1.0, | |
upscale_factor=2, | |
tile_size=1024, | |
tile_stride=1024, | |
progress=gr.Progress(track_tqdm=True) | |
): | |
""" | |
Upscales the low-resolution image using tiling with the Tile ControlNet. | |
Dynamically loads the StableDiffusionControlNetImg2ImgPipeline for tiling, | |
applies LoRAs, processes the image in overlapping tiles, blends the results, | |
and unloads the pipeline to free VRAM. | |
Args: | |
low_res_image (PIL.Image.Image): The low-resolution image from the previous stage. | |
seed (int): The random seed (should ideally match low-res stage seed). | |
steps (int): Number of diffusion inference steps per tile. | |
guidance_scale (float): Classifier-free guidance scale for tiles. | |
strength (float): Img2Img strength for tiling (controls detail vs. original). | |
controlnet_scale (float): Conditioning scale for the Tile ControlNet. | |
upscale_factor (int): Factor by which to increase the image resolution. | |
tile_size (int): Size of the square tiles to process. | |
tile_stride (int): Step size between tiles. Overlap = tile_size - tile_stride. | |
progress (gr.Progress): Gradio progress object for UI updates. | |
Returns: | |
PIL.Image.Image | None: The generated high-resolution PIL Image, or None if an error occurs. | |
Raises: | |
gr.Error: Raises a Gradio error if tiling fails catastrophically. | |
""" | |
if not are_models_loaded() or low_res_image is None: | |
error_msg = "Cannot run hi-res tiling: " | |
if not are_models_loaded(): error_msg += "Models not loaded. " | |
if low_res_image is None: error_msg += "Low-res image is missing." | |
print(f"Error: {error_msg}") | |
return None | |
device = get_device() | |
dtype = get_dtype() | |
controlnet_tile = get_controlnet_tile() | |
high_res_output_image = None | |
pipe_hires = None | |
_, _, positive_prompt_tile, negative_prompt_tile = get_prompts_for_run() | |
generator_tile = torch.Generator(device=device).manual_seed(int(seed)) | |
print("\n--- Starting Hi-Res Tiling Stage ---") | |
progress(0, desc="Preparing for Tiling...") | |
try: | |
# --- Setup Tiling Parameters --- | |
target_width = low_res_image.width * upscale_factor | |
target_height = low_res_image.height * upscale_factor | |
if tile_size > min(target_width, target_height): | |
print(f"Warning: Tile size ({tile_size}) > target dimension ({target_width}x{target_height}). Clamping tile size.") | |
tile_size = min(target_width, target_height) | |
tile_stride = tile_size | |
overlap = tile_size - tile_stride | |
if overlap < 0: | |
print("Warning: Tile stride is larger than tile size. Setting stride = tile size.") | |
tile_stride = tile_size | |
overlap = 0 | |
print(f"Target Res: {target_width}x{target_height}, Tile Size: {tile_size}, Stride: {tile_stride}, Overlap: {overlap}") | |
# 1. Load Pipeline | |
print(f"Loading Hi-Res Pipeline ({BASE_MODEL_ID} + Tile ControlNet)...") | |
progress(0.05, desc="Loading Hi-Res Pipeline...") | |
pipe_hires = StableDiffusionControlNetImg2ImgPipeline.from_pretrained( | |
BASE_MODEL_ID, | |
controlnet=controlnet_tile, | |
torch_dtype=dtype, | |
safety_checker=None, | |
) | |
pipe_hires.scheduler = UniPCMultistepScheduler.from_config(pipe_hires.scheduler.config) | |
pipe_hires.to(device) | |
# pipe_hires.enable_model_cpu_offload() | |
# pipe_hires.enable_xformers_memory_efficient_attention() | |
print("Hi-Res Pipeline loaded to GPU.") | |
cleanup_memory() | |
# 2. Load LoRAs | |
print("Loading LoRAs for Hi-Res pipe...") | |
if os.path.exists(LORA_FILES["style"]) and os.path.exists(LORA_FILES["detail"]): | |
pipe_hires.load_lora_weights(LORA_FILES["style"], adapter_name="style") | |
pipe_hires.load_lora_weights(LORA_FILES["detail"], adapter_name="detail") | |
pipe_hires.set_adapters(ACTIVE_ADAPTERS, adapter_weights=LORA_WEIGHTS_HIRES) | |
print(f"Activated LoRAs: {ACTIVE_ADAPTERS} with weights {LORA_WEIGHTS_HIRES}") | |
else: | |
print("Warning: One or both LoRA files not found. Skipping LoRA loading.") | |
raise gr.Error("Required LoRA files not found in loras/ directory.") | |
# --- Prepare for Tiling Loop --- | |
print(f"Creating blurry base image ({target_width}x{target_height})...") | |
progress(0.15, desc="Preparing Base Image...") | |
blurry_high_res = low_res_image.resize((target_width, target_height), Image.LANCZOS) | |
final_image = Image.new("RGB", (target_width, target_height)) | |
blend_mask = create_blend_mask(tile_size, overlap) | |
num_tiles_x = (target_width + tile_stride - 1) // tile_stride | |
num_tiles_y = (target_height + tile_stride - 1) // tile_stride | |
total_tiles = num_tiles_x * num_tiles_y | |
print(f"Processing {num_tiles_x}x{num_tiles_y} = {total_tiles} tiles...") | |
# --- Tiling Loop --- | |
progress(0.2, desc=f"Processing Tiles (0/{total_tiles})") | |
processed_tile_count = 0 | |
with tqdm(total=total_tiles, desc="Tiling Upscale") as pbar: | |
for y in range(num_tiles_y): | |
for x in range(num_tiles_x): | |
tile_start_time = time.time() | |
pbar.set_description(f"Tiling Upscale (Tile {processed_tile_count+1}/{total_tiles})") | |
x_start = x * tile_stride | |
y_start = y * tile_stride | |
x_end = min(x_start + tile_size, target_width) | |
y_end = min(y_start + tile_size, target_height) | |
crop_box = (x_start, y_start, x_end, y_end) | |
tile_image_blurry = blurry_high_res.crop(crop_box) | |
current_tile_width, current_tile_height = tile_image_blurry.size | |
if current_tile_width < tile_size or current_tile_height < tile_size: | |
try: edge_color = tile_image_blurry.getpixel((0, 0)) | |
except IndexError: edge_color = (127, 127, 127) | |
padded_tile = Image.new("RGB", (tile_size, tile_size), edge_color) | |
padded_tile.paste(tile_image_blurry, (0, 0)) | |
tile_image_blurry = padded_tile | |
print(f"Padded edge tile at ({x},{y})") | |
# 3. Run Inference on the Tile | |
with torch.inference_mode(): | |
output_tile = pipe_hires( | |
prompt=positive_prompt_tile, | |
negative_prompt=negative_prompt_tile, | |
image=tile_image_blurry, | |
control_image=tile_image_blurry, | |
num_inference_steps=int(steps), | |
strength=strength, | |
guidance_scale=guidance_scale, | |
controlnet_conditioning_scale=float(controlnet_scale), | |
generator=generator_tile, | |
output_type="pil" | |
).images[0] | |
# --- Stitch Tile Back --- | |
paste_x = x_start | |
paste_y = y_start | |
crop_w = x_end - x_start | |
crop_h = y_end - y_start | |
output_tile_region = output_tile.crop((0, 0, crop_w, crop_h)) | |
if overlap > 0: | |
blend_mask_region = blend_mask.crop((0, 0, crop_w, crop_h)) | |
current_content_region = final_image.crop((paste_x, paste_y, paste_x + crop_w, paste_y + crop_h)) | |
blended_tile_region = Image.composite(output_tile_region, current_content_region, blend_mask_region) | |
final_image.paste(blended_tile_region, (paste_x, paste_y)) | |
else: | |
final_image.paste(output_tile_region, (paste_x, paste_y)) | |
processed_tile_count += 1 | |
pbar.update(1) | |
# Update Gradio progress | |
gradio_progress = 0.2 + 0.75 * (processed_tile_count / total_tiles) | |
progress(gradio_progress, desc=f"Processing Tile {processed_tile_count}/{total_tiles}") | |
tile_end_time = time.time() | |
print(f"Tile ({x},{y}) processed in {tile_end_time - tile_start_time:.2f}s") | |
# cleanup_memory() | |
print("Tile processing complete.") | |
high_res_output_image = final_image | |
progress(0.95, desc="Tiling Complete") | |
except Exception as e: | |
print(f"ERROR during Hi-Res Tiling Pipeline: {e}") | |
import traceback | |
traceback.print_exc() | |
high_res_output_image = None | |
raise gr.Error(f"Failed during hi-res tiling: {e}") | |
finally: | |
# 4. Cleanup Pipeline | |
print("Cleaning up Hi-Res pipeline...") | |
if pipe_hires is not None: | |
try: | |
if hasattr(pipe_hires, 'get_active_adapters') and pipe_hires.get_active_adapters(): | |
print("Unloading LoRAs...") | |
pipe_hires.unload_lora_weights() | |
except Exception as unload_e: | |
print(f"Note: Error unloading LoRAs: {unload_e}") | |
print("Moving Hi-Res pipe components to CPU before deleting...") | |
try: pipe_hires.to('cpu') | |
except Exception as cpu_e: print(f"Note: Error moving pipe to CPU: {cpu_e}") | |
print("Deleting Hi-Res pipeline object...") | |
del pipe_hires | |
pipe_hires = None | |
print("Running garbage collection and emptying CUDA cache after Hi-Res...") | |
cleanup_memory() | |
print("--- Hi-Res Tiling Stage Finished ---") | |
return high_res_output_image | |