Spaces:
Running
on
Zero
Running
on
Zero
Initial commit
Browse files- .gitignore +1 -0
- README.md +2 -2
- app.py +197 -0
- requirements.txt +5 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
test.py
|
README.md
CHANGED
@@ -8,7 +8,7 @@ sdk_version: 5.22.0
|
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
11 |
-
short_description: Force any model to think like reasoning models
|
12 |
---
|
13 |
|
14 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
11 |
+
short_description: Force any model to think like a reasoning models
|
12 |
---
|
13 |
|
14 |
+
Check out the configuration reference at <https://huggingface.co/docs/hub/spaces-config-reference>
|
app.py
ADDED
@@ -0,0 +1,197 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import threading
|
3 |
+
|
4 |
+
import gradio as gr
|
5 |
+
import spaces
|
6 |
+
import transformers
|
7 |
+
from transformers import pipeline
|
8 |
+
|
9 |
+
# loading model and tokenizer
|
10 |
+
model_name = "Qwen/Qwen2-1.5B-Instruct"
|
11 |
+
if gr.NO_RELOAD:
|
12 |
+
pipe = pipeline(
|
13 |
+
"text-generation",
|
14 |
+
model=model_name,
|
15 |
+
device_map="auto",
|
16 |
+
torch_dtype="auto",
|
17 |
+
)
|
18 |
+
|
19 |
+
# the sentences starting the reasoning step by step
|
20 |
+
rethink_prepends = [
|
21 |
+
"OK, I need to figure out ",
|
22 |
+
"I think ",
|
23 |
+
"Wait, I think ",
|
24 |
+
"Let me check if ",
|
25 |
+
"I should also remember that ",
|
26 |
+
"Another thing to note is that ",
|
27 |
+
"I also recall that ",
|
28 |
+
"I think I have a good grasp ",
|
29 |
+
"Now, using all the above information, I can answer the question using the original language used for the question:"
|
30 |
+
"\n{question}\n"
|
31 |
+
"\n**ANSWER**\n",
|
32 |
+
]
|
33 |
+
|
34 |
+
|
35 |
+
# to fix some problems with math display
|
36 |
+
latex_delimiters = [
|
37 |
+
{"left": "$$", "right": "$$", "display": True},
|
38 |
+
{"left": "$", "right": "$", "display": False},
|
39 |
+
]
|
40 |
+
|
41 |
+
|
42 |
+
def reformat_math(text):
|
43 |
+
"""Fix MathJax delimiters to use the Gradio syntax (Katex).
|
44 |
+
|
45 |
+
This is a workaround to display math formulas in Gradio. For now, I havn't found a way to
|
46 |
+
make it work as expected using others latex_delimiters...
|
47 |
+
"""
|
48 |
+
text = re.sub(r"\\\[\s*(.*?)\s*\\\]", r"$$\1$$", text, flags=re.DOTALL)
|
49 |
+
text = re.sub(r"\\\(\s*(.*?)\s*\\\)", r"$\1$", text, flags=re.DOTALL)
|
50 |
+
return text
|
51 |
+
|
52 |
+
|
53 |
+
def user_input(message, history: list):
|
54 |
+
"""Append the user input in the history and clean the input textbox"""
|
55 |
+
return "", history + [gr.ChatMessage(role="user", content=message)]
|
56 |
+
|
57 |
+
|
58 |
+
def rebuild_messages(history: list):
|
59 |
+
"""Rebuid the messages from the history to be used by the model without the intermediate thoughs"""
|
60 |
+
messages = []
|
61 |
+
for h in history:
|
62 |
+
if isinstance(h, dict) and not h.get("metadata", {}).get("title", False):
|
63 |
+
messages.append(h)
|
64 |
+
elif (
|
65 |
+
isinstance(h, gr.ChatMessage)
|
66 |
+
and h.metadata.get("title")
|
67 |
+
and isinstance(h.content, str)
|
68 |
+
):
|
69 |
+
messages.append({"role": h.role, "content": h.content})
|
70 |
+
return messages
|
71 |
+
|
72 |
+
|
73 |
+
@spaces.GPU
|
74 |
+
def bot(history: list, max_num_tokens: int, final_num_tokens: int):
|
75 |
+
"""Make the model answering the question"""
|
76 |
+
|
77 |
+
# to get token as a stream, later in a thread
|
78 |
+
streamer = transformers.TextIteratorStreamer(
|
79 |
+
pipe.tokenizer, # pyright: ignore
|
80 |
+
skip_special_tokens=True,
|
81 |
+
skip_prompt=True,
|
82 |
+
)
|
83 |
+
|
84 |
+
# to reinsert the question in the reasoning if needed
|
85 |
+
question = history[-1]["content"]
|
86 |
+
|
87 |
+
# prepare the assistant message
|
88 |
+
history.append(
|
89 |
+
gr.ChatMessage(
|
90 |
+
role="assistant",
|
91 |
+
content=str(""),
|
92 |
+
metadata={
|
93 |
+
"title": "Thinking",
|
94 |
+
},
|
95 |
+
)
|
96 |
+
)
|
97 |
+
|
98 |
+
# for the moment, make the reasoning to be displayed in the chat
|
99 |
+
messages = rebuild_messages(history)
|
100 |
+
for i, prepend in enumerate(rethink_prepends):
|
101 |
+
if i > 0:
|
102 |
+
messages[-1]["content"] += "\n\n"
|
103 |
+
messages[-1]["content"] += prepend.format(question=question)
|
104 |
+
|
105 |
+
num_tokens = int(
|
106 |
+
max_num_tokens if "**ANSWER**" not in prepend else final_num_tokens
|
107 |
+
)
|
108 |
+
t = threading.Thread(
|
109 |
+
target=pipe,
|
110 |
+
args=(messages,),
|
111 |
+
kwargs=dict(
|
112 |
+
max_new_tokens=num_tokens,
|
113 |
+
streamer=streamer,
|
114 |
+
),
|
115 |
+
)
|
116 |
+
t.start()
|
117 |
+
|
118 |
+
# rebuild the history with the new content
|
119 |
+
history[-1].content += prepend
|
120 |
+
if "**ANSWER**" in prepend:
|
121 |
+
# stop thinking, this is the answer now (no metadata for intermediate steps)
|
122 |
+
history.append(gr.ChatMessage(role="assistant", content=""))
|
123 |
+
for token in streamer:
|
124 |
+
history[-1].content += token
|
125 |
+
history[-1].content = reformat_math(history[-1].content)
|
126 |
+
yield history
|
127 |
+
t.join()
|
128 |
+
|
129 |
+
yield history
|
130 |
+
|
131 |
+
|
132 |
+
with gr.Blocks(fill_height=True, title="Making any model reasoning") as demo:
|
133 |
+
with gr.Row(scale=1):
|
134 |
+
with gr.Column(scale=5):
|
135 |
+
gr.Markdown(f"""
|
136 |
+
# Force reasoning for any model
|
137 |
+
|
138 |
+
This is a simple proof-of-concept to get any LLM model to reason ahead of its response.
|
139 |
+
This interface uses *{model_name}* model which is **not** a reasoning model. The used method
|
140 |
+
is only to force some "reasoning" steps with prefixes to help the model to enhance the answer.
|
141 |
+
""")
|
142 |
+
chatbot = gr.Chatbot(
|
143 |
+
scale=1,
|
144 |
+
type="messages",
|
145 |
+
latex_delimiters=latex_delimiters,
|
146 |
+
)
|
147 |
+
msg = gr.Textbox(
|
148 |
+
submit_btn=True,
|
149 |
+
label="",
|
150 |
+
show_label=False,
|
151 |
+
placeholder="Type your question here.",
|
152 |
+
)
|
153 |
+
with gr.Column(scale=1):
|
154 |
+
gr.Markdown("""## Tweaks""")
|
155 |
+
num_tokens = gr.Slider(
|
156 |
+
50,
|
157 |
+
255,
|
158 |
+
100,
|
159 |
+
step=1,
|
160 |
+
label="Max tokens per reasoning step",
|
161 |
+
interactive=True,
|
162 |
+
)
|
163 |
+
final_num_tokens = gr.Slider(
|
164 |
+
50,
|
165 |
+
255,
|
166 |
+
200,
|
167 |
+
step=1,
|
168 |
+
label="Max token for the final answer",
|
169 |
+
interactive=True,
|
170 |
+
)
|
171 |
+
gr.Markdown("""
|
172 |
+
Using smaller number of tokens in the reasoning steps will make the model
|
173 |
+
faster to answer, but it may not be able to go deep enough in its reasoning.
|
174 |
+
A good value is 100.
|
175 |
+
|
176 |
+
Using smaller number of tokens for the final answer will make the model
|
177 |
+
to be less verbose, but it may not be able to give a complete answer.
|
178 |
+
A good value is 200 to 255.
|
179 |
+
""")
|
180 |
+
gr.Markdown("""
|
181 |
+
This interface can work on personal computer with 6Go VRAM (e.g. NVidia 30NV). Feel free to fork
|
182 |
+
the application and try others instruct models.
|
183 |
+
""")
|
184 |
+
|
185 |
+
# when the user submit a message, the bot will answer
|
186 |
+
msg.submit(
|
187 |
+
user_input,
|
188 |
+
[msg, chatbot], # inputs
|
189 |
+
[msg, chatbot], # outputs
|
190 |
+
).then(
|
191 |
+
bot,
|
192 |
+
[chatbot, num_tokens, final_num_tokens], # actually, the "history" input
|
193 |
+
chatbot, # to store the new history from the output
|
194 |
+
)
|
195 |
+
|
196 |
+
if __name__ == "__main__":
|
197 |
+
demo.queue().launch()
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
accelerate
|
2 |
+
gradio
|
3 |
+
spaces
|
4 |
+
torch
|
5 |
+
transformers
|