Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import uuid
|
3 |
+
import json
|
4 |
+
|
5 |
+
import gradio as gr
|
6 |
+
|
7 |
+
from openai import OpenAI
|
8 |
+
|
9 |
+
from langchain_community.embeddings.sentence_transformer import SentenceTransformerEmbeddings
|
10 |
+
from langchain_community.vectorstores import Chroma
|
11 |
+
|
12 |
+
from huggingface_hub import CommitScheduler
|
13 |
+
from pathlib import Path
|
14 |
+
|
15 |
+
|
16 |
+
client = OpenAI(
|
17 |
+
base_url="https://api.endpoints.anyscale.com/v1",
|
18 |
+
api_key=os.environ['ANYSCALE_API_KEY']
|
19 |
+
)
|
20 |
+
|
21 |
+
embedding_model = SentenceTransformerEmbeddings(model_name='thenlper/gte-small')
|
22 |
+
|
23 |
+
tesla_10k_collection = 'tesla-10k-2019-to-2023'
|
24 |
+
|
25 |
+
vectorstore_persisted = Chroma(
|
26 |
+
collection_name=tesla_10k_collection,
|
27 |
+
persist_directory='./tesla_db',
|
28 |
+
embedding_function=embedding_model
|
29 |
+
)
|
30 |
+
|
31 |
+
retriever = vectorstore_persisted.as_retriever(
|
32 |
+
search_type='similarity',
|
33 |
+
search_kwargs={'k': 5}
|
34 |
+
)
|
35 |
+
|
36 |
+
# Prepare the logging functionality
|
37 |
+
|
38 |
+
log_file = Path("logs/") / f"data_{uuid.uuid4()}.json"
|
39 |
+
log_folder = log_file.parent
|
40 |
+
|
41 |
+
scheduler = CommitScheduler(
|
42 |
+
repo_id="document-qna-chroma-anyscale-logs",
|
43 |
+
repo_type="dataset",
|
44 |
+
folder_path=log_folder,
|
45 |
+
path_in_repo="data",
|
46 |
+
every=2
|
47 |
+
)
|
48 |
+
|
49 |
+
qna_system_message = """
|
50 |
+
You are an assistant to a financial services firm who answers user queries on annual reports.
|
51 |
+
Users will ask questions delimited by triple backticks, that is, ```.
|
52 |
+
User input will have the context required by you to answer user questions.
|
53 |
+
This context will begin with the token: ###Context.
|
54 |
+
The context contains references to specific portions of a document relevant to the user query.
|
55 |
+
Please answer only using the context provided in the input. However, do not mention anything about the context in your answer.
|
56 |
+
If the answer is not found in the context, respond "I don't know".
|
57 |
+
"""
|
58 |
+
|
59 |
+
qna_user_message_template = """
|
60 |
+
###Context
|
61 |
+
Here are some documents that are relevant to the question.
|
62 |
+
{context}
|
63 |
+
```
|
64 |
+
{question}
|
65 |
+
```
|
66 |
+
"""
|
67 |
+
|
68 |
+
# Define the predict function that runs when 'Submit' is clicked or when a API request is made
|
69 |
+
def predict(user_input):
|
70 |
+
|
71 |
+
relevant_document_chunks = retriever.invoke(user_input)
|
72 |
+
context_list = [d.page_content for d in relevant_document_chunks]
|
73 |
+
context_for_query = ".".join(context_list)
|
74 |
+
|
75 |
+
prompt = [
|
76 |
+
{'role':'system', 'content': qna_system_message},
|
77 |
+
{'role': 'user', 'content': qna_user_message_template.format(
|
78 |
+
context=context_for_query,
|
79 |
+
question=user_input
|
80 |
+
)
|
81 |
+
}
|
82 |
+
]
|
83 |
+
|
84 |
+
try:
|
85 |
+
response = client.chat.completions.create(
|
86 |
+
model='mlabonne/NeuralHermes-2.5-Mistral-7B',
|
87 |
+
messages=prompt,
|
88 |
+
temperature=0
|
89 |
+
)
|
90 |
+
|
91 |
+
prediction = response.choices[0].message.content
|
92 |
+
|
93 |
+
except Exception as e:
|
94 |
+
prediction = e
|
95 |
+
|
96 |
+
# While the prediction is made, log both the inputs and outputs to a local log file
|
97 |
+
# While writing to the log file, ensure that the commit scheduler is locked to avoid parallel
|
98 |
+
# access
|
99 |
+
|
100 |
+
with scheduler.lock:
|
101 |
+
with log_file.open("a") as f:
|
102 |
+
f.write(json.dumps(
|
103 |
+
{
|
104 |
+
'user_input': user_input,
|
105 |
+
'retrieved_context': context_for_query,
|
106 |
+
'model_response': prediction
|
107 |
+
}
|
108 |
+
))
|
109 |
+
f.write("\n")
|
110 |
+
|
111 |
+
return prediction
|
112 |
+
|
113 |
+
|
114 |
+
textbox = gr.Textbox(placeholder="Enter your query here", lines=6)
|
115 |
+
|
116 |
+
# Create the interface
|
117 |
+
demo = gr.Interface(
|
118 |
+
inputs=textbox, fn=predict, outputs="text",
|
119 |
+
title="AMA on Tesla 10-K statements",
|
120 |
+
description="This web API presents an interface to ask questions on contents of the Tesla 10-K reports for the period 2019 - 2023.",
|
121 |
+
article="Note that questions that are not relevant to the Tesla 10-K report will not be answered.",
|
122 |
+
examples=[["What was the total revenue of the company in 2022?", "$ 81.46 Billion"],
|
123 |
+
["Summarize the Management Discussion and Analysis section of the 2021 report in 50 words.", ""],
|
124 |
+
["What was the company's debt level in 2020?", ""],
|
125 |
+
["Identify 5 key risks identified in the 2019 10k report? Respond with bullet point summaries.", ""]
|
126 |
+
],
|
127 |
+
concurrency_limit=16
|
128 |
+
)
|
129 |
+
|
130 |
+
demo.queue()
|
131 |
+
demo.launch()
|