import gradio as gr from transformers import AutoFeatureExtractor, AutoModelForImageClassification from PIL import Image import torch model = AutoModelForImageClassification.from_pretrained("prithivMLmods/Mature-Content-Detection") feature_extractor = AutoFeatureExtractor.from_pretrained("prithivMLmods/Mature-Content-Detection") def predict(image): inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) probs = torch.nn.functional.softmax(outputs.logits, dim=-1) labels = model.config.id2label return {labels[i]: float(probs[0][i]) for i in range(len(labels))} demo = gr.Interface( fn=predict, inputs=gr.Image(type="pil"), outputs=gr.Label(num_top_classes=5), title="Mature Content Detector", description="Detects fine-grained categories such as neutral, pornographic, sensual, hentai, etc." ) if __name__ == "__main__": demo.launch()