File size: 8,043 Bytes
f7da062
 
2deffa3
f7da062
 
 
 
 
 
784095e
f7da062
 
 
 
 
ef2e9bf
 
 
 
 
 
 
f7da062
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
784095e
 
 
f7da062
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4877230
784095e
a393032
 
 
 
 
4877230
a393032
 
 
4877230
a393032
 
 
 
 
 
 
 
 
 
 
 
 
 
 
784095e
a393032
 
 
784095e
a393032
 
 
 
 
 
 
 
8293478
a393032
 
f7da062
 
 
 
ef2e9bf
 
 
f7da062
 
 
 
 
 
 
 
ef2e9bf
f7da062
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
784095e
f5a1495
 
 
 
 
 
f7da062
f5a1495
 
 
 
 
 
 
f7da062
ef2e9bf
f7da062
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import gradio as gr
import torch
import os
from PIL import Image
import numpy as np
from diffusers import StableDiffusionDepth2ImgPipeline
from pathlib import Path

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
is_gpu_associated = torch.cuda.is_available()
dept2img = StableDiffusionDepth2ImgPipeline.from_pretrained(
    "stabilityai/stable-diffusion-2-depth",
    torch_dtype=torch.float16,
).to(device)

css = '''
    .instruction{position: absolute; top: 0;right: 0;margin-top: 0px !important}
    .arrow{position: absolute;top: 0;right: -110px;margin-top: -8px !important}
    #component-4, #component-3, #component-10{min-height: 0}
    .duplicate-button img{margin: 0}
'''


def pad_image(input_image):
    pad_w, pad_h = np.max(((2, 2), np.ceil(
        np.array(input_image.size) / 64).astype(int)), axis=0) * 64 - input_image.size
    im_padded = Image.fromarray(
        np.pad(np.array(input_image), ((0, pad_h), (0, pad_w), (0, 0)), mode='edge'))
    w, h = im_padded.size
    if w == h:
        return im_padded
    elif w > h:
        new_image = Image.new(im_padded.mode, (w, w), (0, 0, 0))
        new_image.paste(im_padded, (0, (w - h) // 2))
        return new_image
    else:
        new_image = Image.new(im_padded.mode, (h, h), (0, 0, 0))
        new_image.paste(im_padded, ((h - w) // 2, 0))
        return new_image


def predict(input_image, prompt, negative_prompt, steps, num_samples, scale, seed, strength, depth_image=None):
    if not is_gpu_associated:
        raise gr.Error("Please associate a T4 GPU for this Space")
    torch.cuda.empty_cache()
    depth = None
    if depth_image is not None:
        depth_image = pad_image(depth_image)
        depth_image = depth_image.resize((512, 512))
        depth = np.array(depth_image.convert("L"))
        depth = depth.astype(np.float32) / 255.0
        depth = depth[None, None]
        depth = torch.from_numpy(depth)
    init_image = input_image.convert("RGB")
    image = pad_image(init_image)  # resize to integer multiple of 32
    image = image.resize((512, 512))
    result = dept2img(
        image=image,
        prompt=prompt,
        negative_prompt=negative_prompt,
        depth_image=depth,
        seed=seed,
        strength=strength,
        num_inference_steps=steps,
        guidance_scale=scale,
        num_images_per_prompt=num_samples,
    )
    return result['images']


block = gr.Blocks().queue()
with block:
    with gr.Box():
        if is_gpu_associated:
            top_description = gr.HTML(f'''
                <div style="text-align: center; max-width: 650px; margin: 0 auto;">
                <div>
                    <img class="logo" src="file/mirage.png" alt="Mirage Logo"
                        style="margin: auto; max-width: 7rem;">
                    <br />
                    <h1 style="font-weight: 900; font-size: 2.5rem;">
                    Depth2Img Web UI
                    </h1>
                    <br />
                    <a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/MirageML/depth2img?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a>
                </div>
                <br />
                <br />
                <p style="margin-bottom: 10px; font-size: 94%">
                Create variations of an image while preserving shape and depth!
                </p>
                </div>
            ''')
        else:
            top_description = gr.HTML(f'''
                <div style="text-align: center; max-width: 650px; margin: 0 auto;">
                <div>
                    <img class="logo" src="file/mirage.png" alt="Mirage Logo"
                        style="margin: auto; max-width: 7rem;">
                    <br />
                    <h1 style="font-weight: 900; font-size: 2.5rem;">
                    Depth2Img Web UI
                    </h1>
                    <br />
                    <a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/MirageML/depth2img?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a>
                </div>
                <br />
                <br />
                <p style="margin-bottom: 10px; font-size: 94%">
                Create variations of an image while preserving shape and depth!
                </p>
                <br />
                <p>There's only one step left before you can run the app: <a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}/settings" style="text-decoration: underline" target="_blank">attribute a <b>T4 GPU</b> to it (via the Settings tab)</a> and run the app below. You will be billed by the minute from when you activate the GPU until it is turned it off.</p>
                </div>
            ''')

    with gr.Row():
        with gr.Column():
            input_image = gr.Image(source='upload', type="pil")
            # depth_image = gr.Image(
            #     source='upload', type="pil", label="Depth image Optional", value=None)
            depth_image = None
            prompt = gr.Textbox(label="Prompt")
            negative_prompt = gr.Textbox(label="Negative Pompt")

            run_button = gr.Button(label="Run")
            with gr.Accordion("Advanced options", open=False):
                num_samples = gr.Slider(
                    label="Images", minimum=1, maximum=4, value=1, step=1)
                steps = gr.Slider(label="Steps", minimum=1,
                                  maximum=100, value=50, step=1)
                scale = gr.Slider(
                    label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1
                )
                strength = gr.Slider(
                    label="Strength", minimum=0.0, maximum=1.0, value=0.9, step=0.01
                )
                seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=2147483647,
                    step=1,
                    randomize=True,
                )
        with gr.Column():
            gallery = gr.Gallery(label="Generated images", show_label=False).style(
                grid=[2], height="auto")
    if is_gpu_associated:
        gr.Examples(
            examples=[
                ["./examples/original_iso.png", "hogwarts castle",
                "", 50, 4, 10.0, 123123123, 0.8],
                ["./examples/original_sword.png", "flaming sword",
                "", 50, 4, 9.0, 1734133747, 0.8],

            ],
            inputs=[input_image, prompt, negative_prompt, steps,
                    num_samples, scale, seed, strength],
            outputs=[gallery],
            fn=predict,
            cache_examples=True,
        )
    run_button.click(fn=predict, inputs=[input_image, prompt, negative_prompt,
                     steps, num_samples, scale, seed, strength], outputs=[gallery])


block.launch(show_api=False)