Spaces:
Runtime error
Runtime error
File size: 8,043 Bytes
f7da062 2deffa3 f7da062 784095e f7da062 ef2e9bf f7da062 784095e f7da062 4877230 784095e a393032 4877230 a393032 4877230 a393032 784095e a393032 784095e a393032 8293478 a393032 f7da062 ef2e9bf f7da062 ef2e9bf f7da062 784095e f5a1495 f7da062 f5a1495 f7da062 ef2e9bf f7da062 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
import gradio as gr
import torch
import os
from PIL import Image
import numpy as np
from diffusers import StableDiffusionDepth2ImgPipeline
from pathlib import Path
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
is_gpu_associated = torch.cuda.is_available()
dept2img = StableDiffusionDepth2ImgPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-depth",
torch_dtype=torch.float16,
).to(device)
css = '''
.instruction{position: absolute; top: 0;right: 0;margin-top: 0px !important}
.arrow{position: absolute;top: 0;right: -110px;margin-top: -8px !important}
#component-4, #component-3, #component-10{min-height: 0}
.duplicate-button img{margin: 0}
'''
def pad_image(input_image):
pad_w, pad_h = np.max(((2, 2), np.ceil(
np.array(input_image.size) / 64).astype(int)), axis=0) * 64 - input_image.size
im_padded = Image.fromarray(
np.pad(np.array(input_image), ((0, pad_h), (0, pad_w), (0, 0)), mode='edge'))
w, h = im_padded.size
if w == h:
return im_padded
elif w > h:
new_image = Image.new(im_padded.mode, (w, w), (0, 0, 0))
new_image.paste(im_padded, (0, (w - h) // 2))
return new_image
else:
new_image = Image.new(im_padded.mode, (h, h), (0, 0, 0))
new_image.paste(im_padded, ((h - w) // 2, 0))
return new_image
def predict(input_image, prompt, negative_prompt, steps, num_samples, scale, seed, strength, depth_image=None):
if not is_gpu_associated:
raise gr.Error("Please associate a T4 GPU for this Space")
torch.cuda.empty_cache()
depth = None
if depth_image is not None:
depth_image = pad_image(depth_image)
depth_image = depth_image.resize((512, 512))
depth = np.array(depth_image.convert("L"))
depth = depth.astype(np.float32) / 255.0
depth = depth[None, None]
depth = torch.from_numpy(depth)
init_image = input_image.convert("RGB")
image = pad_image(init_image) # resize to integer multiple of 32
image = image.resize((512, 512))
result = dept2img(
image=image,
prompt=prompt,
negative_prompt=negative_prompt,
depth_image=depth,
seed=seed,
strength=strength,
num_inference_steps=steps,
guidance_scale=scale,
num_images_per_prompt=num_samples,
)
return result['images']
block = gr.Blocks().queue()
with block:
with gr.Box():
if is_gpu_associated:
top_description = gr.HTML(f'''
<div style="text-align: center; max-width: 650px; margin: 0 auto;">
<div>
<img class="logo" src="file/mirage.png" alt="Mirage Logo"
style="margin: auto; max-width: 7rem;">
<br />
<h1 style="font-weight: 900; font-size: 2.5rem;">
Depth2Img Web UI
</h1>
<br />
<a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/MirageML/depth2img?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a>
</div>
<br />
<br />
<p style="margin-bottom: 10px; font-size: 94%">
Create variations of an image while preserving shape and depth!
</p>
</div>
''')
else:
top_description = gr.HTML(f'''
<div style="text-align: center; max-width: 650px; margin: 0 auto;">
<div>
<img class="logo" src="file/mirage.png" alt="Mirage Logo"
style="margin: auto; max-width: 7rem;">
<br />
<h1 style="font-weight: 900; font-size: 2.5rem;">
Depth2Img Web UI
</h1>
<br />
<a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/MirageML/depth2img?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a>
</div>
<br />
<br />
<p style="margin-bottom: 10px; font-size: 94%">
Create variations of an image while preserving shape and depth!
</p>
<br />
<p>There's only one step left before you can run the app: <a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}/settings" style="text-decoration: underline" target="_blank">attribute a <b>T4 GPU</b> to it (via the Settings tab)</a> and run the app below. You will be billed by the minute from when you activate the GPU until it is turned it off.</p>
</div>
''')
with gr.Row():
with gr.Column():
input_image = gr.Image(source='upload', type="pil")
# depth_image = gr.Image(
# source='upload', type="pil", label="Depth image Optional", value=None)
depth_image = None
prompt = gr.Textbox(label="Prompt")
negative_prompt = gr.Textbox(label="Negative Pompt")
run_button = gr.Button(label="Run")
with gr.Accordion("Advanced options", open=False):
num_samples = gr.Slider(
label="Images", minimum=1, maximum=4, value=1, step=1)
steps = gr.Slider(label="Steps", minimum=1,
maximum=100, value=50, step=1)
scale = gr.Slider(
label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1
)
strength = gr.Slider(
label="Strength", minimum=0.0, maximum=1.0, value=0.9, step=0.01
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=2147483647,
step=1,
randomize=True,
)
with gr.Column():
gallery = gr.Gallery(label="Generated images", show_label=False).style(
grid=[2], height="auto")
if is_gpu_associated:
gr.Examples(
examples=[
["./examples/original_iso.png", "hogwarts castle",
"", 50, 4, 10.0, 123123123, 0.8],
["./examples/original_sword.png", "flaming sword",
"", 50, 4, 9.0, 1734133747, 0.8],
],
inputs=[input_image, prompt, negative_prompt, steps,
num_samples, scale, seed, strength],
outputs=[gallery],
fn=predict,
cache_examples=True,
)
run_button.click(fn=predict, inputs=[input_image, prompt, negative_prompt,
steps, num_samples, scale, seed, strength], outputs=[gallery])
block.launch(show_api=False) |