GenDoc_05 / app.py_145_OK
MisterAI's picture
Rename app.py to app.py_145_OK
c906b26 verified
#https://huggingface.co/spaces/MisterAI/GenDoc_05
#app.py_145
#Separation Du Code
import os
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import time
from llm.list_llm import TEXT_MODELS, IMAGE_MODELS
from llm.prompt_llm import PREPROMPT
from python_pptx.python_pptx import PresentationGenerator
# Configuration du modèle par défaut
DEFAULT_MODEL = "ibm-granite/granite-3.1-3b-a800m-Instruct"
class ExecutionTimer:
def __init__(self):
self.start_time = None
self.last_duration = None
def start(self):
self.start_time = time.time()
def get_elapsed(self):
if self.start_time is None:
return 0
return time.time() - self.start_time
def stop(self):
if self.start_time is not None:
self.last_duration = self.get_elapsed()
self.start_time = None
return self.last_duration
def get_status(self):
if self.start_time is not None:
current = self.get_elapsed()
last = f" (précédent: {self.last_duration:.2f}s)" if self.last_duration else ""
return f"En cours... {current:.2f}s{last}"
elif self.last_duration:
return f"Terminé en {self.last_duration:.2f}s"
return "En attente..."
def generate_text(model_path, prompt, temperature=0.7, max_tokens=2048):
try:
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(
model_path,
torch_dtype=torch.float32,
device_map="auto"
)
model.eval()
chat = [{"role": "user", "content": prompt}]
formatted_prompt = tokenizer.apply_chat_template(
chat,
tokenize=False,
add_generation_prompt=True
)
inputs = tokenizer(
formatted_prompt,
return_tensors="pt",
truncation=True,
max_length=4096
).to(model.device)
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=max_tokens,
temperature=temperature,
do_sample=True,
pad_token_id=tokenizer.eos_token_id
)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
except Exception as e:
print(f"Erreur lors de la génération: {str(e)}")
raise
def generate_skeleton(model_name, text, temperature, max_tokens):
"""Génère le squelette de la présentation"""
try:
timer.start()
model_path = TEXT_MODELS.get(model_name, DEFAULT_MODEL)
full_prompt = PREPROMPT + "\n\n" + text
generated_content = generate_text(model_path, full_prompt, temperature, max_tokens)
status = timer.get_status()
timer.stop()
return status, generated_content, gr.update(visible=True)
except Exception as e:
timer.stop()
error_msg = f"Erreur: {str(e)}"
print(error_msg)
return error_msg, None, gr.update(visible=False)
def create_presentation_file(generated_content):
"""Crée le fichier PowerPoint à partir du contenu généré"""
try:
timer.start()
generator = PresentationGenerator()
slides = generator.parse_presentation_content(generated_content)
prs = generator.create_presentation(slides)
output_path = os.path.join(os.getcwd(), "presentation.pptx")
prs.save(output_path)
timer.stop()
return output_path
except Exception as e:
timer.stop()
print(f"Erreur lors de la création du fichier: {str(e)}")
return None
# Timer global pour le suivi du temps
timer = ExecutionTimer()
# Interface Gradio
with gr.Blocks(theme=gr.themes.Glass()) as demo:
gr.Markdown(
"""
# Générateur de Présentations PowerPoint IA
Créez des présentations professionnelles automatiquement avec l'aide de l'IA.
"""
)
with gr.Row():
with gr.Column(scale=1):
model_selector = gr.Dropdown(
choices=list(TEXT_MODELS.keys()) if TEXT_MODELS else ["Granite"],
value="Granite" if not TEXT_MODELS else list(TEXT_MODELS.keys())[0],
label="Modèle de texte"
)
temperature = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.7,
step=0.1,
label="Température"
)
max_tokens = gr.Slider(
minimum=1000,
maximum=4096,
value=2048,
step=256,
label="Tokens maximum"
)
with gr.Row():
with gr.Column(scale=2):
input_text = gr.Textbox(
lines=10,
label="Votre texte",
placeholder="Décrivez le contenu que vous souhaitez pour votre présentation..."
)
with gr.Row():
generate_skeleton_btn = gr.Button("Générer le Squelette de la Présentation", variant="primary")
with gr.Row():
with gr.Column():
status_output = gr.Textbox(
label="Statut",
lines=2,
value="En attente..."
)
generated_content = gr.Textbox(
label="Contenu généré",
lines=10,
show_copy_button=True
)
create_presentation_btn = gr.Button("Créer Présentation", visible=False)
output_file = gr.File(
label="Présentation PowerPoint",
type="filepath"
)
generate_skeleton_btn.click(
fn=generate_skeleton,
inputs=[
model_selector,
input_text,
temperature,
max_tokens
],
outputs=[
status_output,
generated_content,
create_presentation_btn
]
)
create_presentation_btn.click(
fn=create_presentation_file,
inputs=[generated_content],
outputs=[output_file]
)
if __name__ == "__main__":
demo.launch()