Upload app.py.H2O_GGUF
Browse files- app.py.H2O_GGUF +274 -0
app.py.H2O_GGUF
ADDED
@@ -0,0 +1,274 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#app.py.chatbot
|
2 |
+
#app.py Modif04
|
3 |
+
#https://www.freddyboulton.com/blog/llama-cpp-python
|
4 |
+
import gradio as gr
|
5 |
+
from llama_cpp import Llama
|
6 |
+
|
7 |
+
llm = Llama(
|
8 |
+
model_path="/home/user/app/h2o-danube3-500m-chat-Q4_K_M.gguf",
|
9 |
+
verbose=True
|
10 |
+
)
|
11 |
+
|
12 |
+
def predict(message, history):
|
13 |
+
# messages = [{"role": "system", "content": "You are a helpful assistant."}]
|
14 |
+
# messages = [{"role": "assistant", "content": "You are a helpful assistant."}]
|
15 |
+
# messages = [{"role": "assistant", "content": "Bonjour, comment puis-je vous aider?"}]
|
16 |
+
messages = []
|
17 |
+
for user_message, bot_message in history:
|
18 |
+
if user_message:
|
19 |
+
messages.append({"role": "user", "content": user_message})
|
20 |
+
if bot_message:
|
21 |
+
messages.append({"role": "assistant", "content": bot_message})
|
22 |
+
messages.append({"role": "user", "content": message})
|
23 |
+
|
24 |
+
response = ""
|
25 |
+
for chunk in llm.create_chat_completion(
|
26 |
+
stream=True,
|
27 |
+
messages=messages,
|
28 |
+
):
|
29 |
+
part = chunk["choices"][0]["delta"].get("content", None)
|
30 |
+
if part:
|
31 |
+
response += part
|
32 |
+
yield response
|
33 |
+
|
34 |
+
demo = gr.ChatInterface(predict)
|
35 |
+
|
36 |
+
demo.launch()
|
37 |
+
|
38 |
+
|
39 |
+
|
40 |
+
##app.py Modif03
|
41 |
+
#import gradio as gr
|
42 |
+
#from huggingface_hub import create_inference_endpoint, InferenceClient
|
43 |
+
#from transformers import AutoModelForCausalLM, AutoTokenizer
|
44 |
+
#
|
45 |
+
##model_name = "MisterAI/H20GPT_h2o-danube3-500m-chat-Q4_K_M_gguf"
|
46 |
+
##model = AutoModelForCausalLM.from_pretrained(model_name)
|
47 |
+
##tokenizer = AutoTokenizer.from_pretrained(model_name)
|
48 |
+
#
|
49 |
+
##client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
50 |
+
##client = InferenceClient("MisterAI/H20GPT_h2o-danube3-500m-chat-Q4_K_M_gguf")
|
51 |
+
##client = InferenceClient("/home/user/app/H20GPT_h2o-danube3-500m-chat-Q4_K_M.gguf")
|
52 |
+
#
|
53 |
+
## Créez une instance Inference locale
|
54 |
+
#endpoint = create_inference_endpoint(
|
55 |
+
# "Local-Endpoint-MisterAI-H2O",
|
56 |
+
# repository="MisterAI/H20GPT_h2o-danube3-500m-chat-Q4_K_M_gguf",
|
57 |
+
## model_path="/home/user/app/H20GPT_h2o-danube3-500m-chat-Q4_K_M.gguf",
|
58 |
+
# framework="pytorch",
|
59 |
+
# task="text-generation",
|
60 |
+
# accelerator="cpu",
|
61 |
+
# vendor="local",
|
62 |
+
# region="local",
|
63 |
+
# type="unprotected",
|
64 |
+
# instance_size="small",
|
65 |
+
# instance_type="local",
|
66 |
+
# URL="http://0.0.0.0:6789"
|
67 |
+
#)
|
68 |
+
#
|
69 |
+
#print(f"Endpoint créé à l'URL : {endpoint.url}")
|
70 |
+
#
|
71 |
+
#client = endpoint.client
|
72 |
+
#
|
73 |
+
#
|
74 |
+
#
|
75 |
+
#def respond(
|
76 |
+
# message,
|
77 |
+
# history: list[tuple[str, str]],
|
78 |
+
# system_message,
|
79 |
+
# max_tokens,
|
80 |
+
# temperature,
|
81 |
+
# top_p,
|
82 |
+
#):
|
83 |
+
# messages = [{"role": "system", "content": system_message}]
|
84 |
+
#
|
85 |
+
# for val in history:
|
86 |
+
# if val[0]:
|
87 |
+
# messages.append({"role": "user", "content": val[0]})
|
88 |
+
# if val[1]:
|
89 |
+
# messages.append({"role": "assistant", "content": val[1]})
|
90 |
+
#
|
91 |
+
# messages.append({"role": "user", "content": message})
|
92 |
+
#
|
93 |
+
# response = ""
|
94 |
+
#
|
95 |
+
# for message in client.chat_completion(
|
96 |
+
# messages,
|
97 |
+
# max_tokens=max_tokens,
|
98 |
+
# stream=True,
|
99 |
+
# temperature=temperature,
|
100 |
+
# top_p=top_p,
|
101 |
+
# ):
|
102 |
+
# token = message.choices[0].delta.content
|
103 |
+
#
|
104 |
+
# response += token
|
105 |
+
# yield response
|
106 |
+
#
|
107 |
+
#demo = gr.ChatInterface(
|
108 |
+
# respond,
|
109 |
+
# additional_inputs=[
|
110 |
+
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
111 |
+
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
112 |
+
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
113 |
+
# gr.Slider(
|
114 |
+
# minimum=0.1,
|
115 |
+
# maximum=1.0,
|
116 |
+
# value=0.95,
|
117 |
+
# step=0.05,
|
118 |
+
# label="Top-p (nucleus sampling)",
|
119 |
+
# ),
|
120 |
+
# ],
|
121 |
+
#)
|
122 |
+
#
|
123 |
+
#
|
124 |
+
#if __name__ == "__main__":
|
125 |
+
# demo.launch()
|
126 |
+
#
|
127 |
+
#
|
128 |
+
#
|
129 |
+
#
|
130 |
+
##app.py Modif01
|
131 |
+
#import gradio as gr
|
132 |
+
#from huggingface_hub import Inference, InferenceClient
|
133 |
+
#from transformers import AutoModelForCausalLM, AutoTokenizer
|
134 |
+
#
|
135 |
+
##model_name = "MisterAI/H20GPT_h2o-danube3-500m-chat-Q4_K_M_gguf"
|
136 |
+
##model = AutoModelForCausalLM.from_pretrained(model_name)
|
137 |
+
##tokenizer = AutoTokenizer.from_pretrained(model_name)
|
138 |
+
#
|
139 |
+
##client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
140 |
+
##client = InferenceClient("MisterAI/H20GPT_h2o-danube3-500m-chat-Q4_K_M_gguf")
|
141 |
+
##client = InferenceClient("/home/user/app/H20GPT_h2o-danube3-500m-chat-Q4_K_M.gguf")
|
142 |
+
#
|
143 |
+
## Créez une instance Inference locale
|
144 |
+
#inference = Inference(
|
145 |
+
# model_path="/home/user/app/H20GPT_h2o-danube3-500m-chat-Q4_K_M.gguf",
|
146 |
+
# device="cpu", # Utilisez le CPU pour l'inference
|
147 |
+
# token=None, # Pas de token nécessaire pour cette instance
|
148 |
+
#)
|
149 |
+
#
|
150 |
+
#client = inference
|
151 |
+
#
|
152 |
+
#
|
153 |
+
#
|
154 |
+
#def respond(
|
155 |
+
# message,
|
156 |
+
# history: list[tuple[str, str]],
|
157 |
+
# system_message,
|
158 |
+
# max_tokens,
|
159 |
+
# temperature,
|
160 |
+
# top_p,
|
161 |
+
#):
|
162 |
+
# messages = [{"role": "system", "content": system_message}]
|
163 |
+
#
|
164 |
+
# for val in history:
|
165 |
+
# if val[0]:
|
166 |
+
# messages.append({"role": "user", "content": val[0]})
|
167 |
+
# if val[1]:
|
168 |
+
# messages.append({"role": "assistant", "content": val[1]})
|
169 |
+
#
|
170 |
+
# messages.append({"role": "user", "content": message})
|
171 |
+
#
|
172 |
+
# response = ""
|
173 |
+
#
|
174 |
+
# for message in client.chat_completion(
|
175 |
+
# messages,
|
176 |
+
# max_tokens=max_tokens,
|
177 |
+
# stream=True,
|
178 |
+
# temperature=temperature,
|
179 |
+
# top_p=top_p,
|
180 |
+
# ):
|
181 |
+
# token = message.choices[0].delta.content
|
182 |
+
#
|
183 |
+
# response += token
|
184 |
+
# yield response
|
185 |
+
#
|
186 |
+
#demo = gr.ChatInterface(
|
187 |
+
# respond,
|
188 |
+
# additional_inputs=[
|
189 |
+
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
190 |
+
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
191 |
+
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
192 |
+
# gr.Slider(
|
193 |
+
# minimum=0.1,
|
194 |
+
# maximum=1.0,
|
195 |
+
# value=0.95,
|
196 |
+
# step=0.05,
|
197 |
+
# label="Top-p (nucleus sampling)",
|
198 |
+
# ),
|
199 |
+
# ],
|
200 |
+
#)
|
201 |
+
#
|
202 |
+
#
|
203 |
+
#if __name__ == "__main__":
|
204 |
+
# demo.launch()
|
205 |
+
#
|
206 |
+
#
|
207 |
+
#
|
208 |
+
#
|
209 |
+
#
|
210 |
+
##app.py ORIGINAL
|
211 |
+
#import gradio as gr
|
212 |
+
#from huggingface_hub import InferenceClient
|
213 |
+
#
|
214 |
+
#"""
|
215 |
+
#For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
216 |
+
#"""
|
217 |
+
#client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
218 |
+
#
|
219 |
+
#
|
220 |
+
#def respond(
|
221 |
+
# message,
|
222 |
+
# history: list[tuple[str, str]],
|
223 |
+
# system_message,
|
224 |
+
# max_tokens,
|
225 |
+
# temperature,
|
226 |
+
# top_p,
|
227 |
+
#):
|
228 |
+
# messages = [{"role": "system", "content": system_message}]
|
229 |
+
#
|
230 |
+
# for val in history:
|
231 |
+
# if val[0]:
|
232 |
+
# messages.append({"role": "user", "content": val[0]})
|
233 |
+
# if val[1]:
|
234 |
+
# messages.append({"role": "assistant", "content": val[1]})
|
235 |
+
#
|
236 |
+
# messages.append({"role": "user", "content": message})
|
237 |
+
#
|
238 |
+
# response = ""
|
239 |
+
#
|
240 |
+
# for message in client.chat_completion(
|
241 |
+
# messages,
|
242 |
+
# max_tokens=max_tokens,
|
243 |
+
# stream=True,
|
244 |
+
# temperature=temperature,
|
245 |
+
# top_p=top_p,
|
246 |
+
# ):
|
247 |
+
# token = message.choices[0].delta.content
|
248 |
+
#
|
249 |
+
# response += token
|
250 |
+
# yield response
|
251 |
+
#
|
252 |
+
#"""
|
253 |
+
#For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
254 |
+
#"""
|
255 |
+
#demo = gr.ChatInterface(
|
256 |
+
# respond,
|
257 |
+
# additional_inputs=[
|
258 |
+
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
259 |
+
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
260 |
+
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
261 |
+
# gr.Slider(
|
262 |
+
# minimum=0.1,
|
263 |
+
# maximum=1.0,
|
264 |
+
# value=0.95,
|
265 |
+
# step=0.05,
|
266 |
+
# label="Top-p (nucleus sampling)",
|
267 |
+
# ),
|
268 |
+
# ],
|
269 |
+
#)
|
270 |
+
#
|
271 |
+
#
|
272 |
+
#if __name__ == "__main__":
|
273 |
+
# demo.launch()
|
274 |
+
|