Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,305 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
###TEST03 JUSTE CHARGER FLUX-SCHNELL
|
| 2 |
+
###https://huggingface.co/spaces/black-forest-labs/FLUX.1-schnell/blob/main/app.py
|
| 3 |
+
###
|
| 4 |
+
import os
|
| 5 |
+
import gradio as gr
|
| 6 |
+
from huggingface_hub import login
|
| 7 |
+
from diffusers import FluxPipeline
|
| 8 |
+
import torch
|
| 9 |
+
from PIL import Image
|
| 10 |
+
import fitz # PyMuPDF pour la gestion des PDF
|
| 11 |
+
import sentencepiece
|
| 12 |
+
|
| 13 |
+
import numpy as np
|
| 14 |
+
import random
|
| 15 |
+
import spaces
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
#
|
| 22 |
+
#import gradio as gr
|
| 23 |
+
#import numpy as np
|
| 24 |
+
#import random
|
| 25 |
+
#import spaces
|
| 26 |
+
#import torch
|
| 27 |
+
#from diffusers import DiffusionPipeline
|
| 28 |
+
#
|
| 29 |
+
#dtype = torch.bfloat16
|
| 30 |
+
#device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 31 |
+
#
|
| 32 |
+
#pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device)
|
| 33 |
+
#
|
| 34 |
+
#MAX_SEED = np.iinfo(np.int32).max
|
| 35 |
+
#MAX_IMAGE_SIZE = 2048
|
| 36 |
+
#
|
| 37 |
+
#@spaces.GPU()
|
| 38 |
+
#def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
|
| 39 |
+
# if randomize_seed:
|
| 40 |
+
# seed = random.randint(0, MAX_SEED)
|
| 41 |
+
# generator = torch.Generator().manual_seed(seed)
|
| 42 |
+
# image = pipe(
|
| 43 |
+
# prompt = prompt,
|
| 44 |
+
# width = width,
|
| 45 |
+
# height = height,
|
| 46 |
+
# num_inference_steps = num_inference_steps,
|
| 47 |
+
# generator = generator,
|
| 48 |
+
# guidance_scale=0.0
|
| 49 |
+
# ).images[0]
|
| 50 |
+
# return image, seed
|
| 51 |
+
#
|
| 52 |
+
#examples = [
|
| 53 |
+
# "a tiny astronaut hatching from an egg on the moon",
|
| 54 |
+
# "a cat holding a sign that says hello world",
|
| 55 |
+
# "an anime illustration of a wiener schnitzel",
|
| 56 |
+
#]
|
| 57 |
+
#
|
| 58 |
+
#css="""
|
| 59 |
+
##col-container {
|
| 60 |
+
# margin: 0 auto;
|
| 61 |
+
# max-width: 520px;
|
| 62 |
+
#}
|
| 63 |
+
#"""
|
| 64 |
+
#
|
| 65 |
+
#with gr.Blocks(css=css) as demo:
|
| 66 |
+
#
|
| 67 |
+
# with gr.Column(elem_id="col-container"):
|
| 68 |
+
# gr.Markdown(f"""# FLUX.1 [schnell]
|
| 69 |
+
#12B param rectified flow transformer distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) for 4 step generation
|
| 70 |
+
#[[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-schnell)]
|
| 71 |
+
# """)
|
| 72 |
+
#
|
| 73 |
+
# with gr.Row():
|
| 74 |
+
#
|
| 75 |
+
# prompt = gr.Text(
|
| 76 |
+
# label="Prompt",
|
| 77 |
+
# show_label=False,
|
| 78 |
+
# max_lines=1,
|
| 79 |
+
# placeholder="Enter your prompt",
|
| 80 |
+
# container=False,
|
| 81 |
+
# )
|
| 82 |
+
#
|
| 83 |
+
# run_button = gr.Button("Run", scale=0)
|
| 84 |
+
#
|
| 85 |
+
# result = gr.Image(label="Result", show_label=False)
|
| 86 |
+
#
|
| 87 |
+
# with gr.Accordion("Advanced Settings", open=False):
|
| 88 |
+
#
|
| 89 |
+
# seed = gr.Slider(
|
| 90 |
+
# label="Seed",
|
| 91 |
+
# minimum=0,
|
| 92 |
+
# maximum=MAX_SEED,
|
| 93 |
+
# step=1,
|
| 94 |
+
# value=0,
|
| 95 |
+
# )
|
| 96 |
+
#
|
| 97 |
+
# randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 98 |
+
#
|
| 99 |
+
# with gr.Row():
|
| 100 |
+
#
|
| 101 |
+
# width = gr.Slider(
|
| 102 |
+
# label="Width",
|
| 103 |
+
# minimum=256,
|
| 104 |
+
# maximum=MAX_IMAGE_SIZE,
|
| 105 |
+
# step=32,
|
| 106 |
+
# value=1024,
|
| 107 |
+
# )
|
| 108 |
+
#
|
| 109 |
+
# height = gr.Slider(
|
| 110 |
+
# label="Height",
|
| 111 |
+
# minimum=256,
|
| 112 |
+
# maximum=MAX_IMAGE_SIZE,
|
| 113 |
+
# step=32,
|
| 114 |
+
# value=1024,
|
| 115 |
+
# )
|
| 116 |
+
#
|
| 117 |
+
# with gr.Row():
|
| 118 |
+
#
|
| 119 |
+
#
|
| 120 |
+
# num_inference_steps = gr.Slider(
|
| 121 |
+
# label="Number of inference steps",
|
| 122 |
+
# minimum=1,
|
| 123 |
+
# maximum=50,
|
| 124 |
+
# step=1,
|
| 125 |
+
# value=4,
|
| 126 |
+
# )
|
| 127 |
+
#
|
| 128 |
+
# gr.Examples(
|
| 129 |
+
# examples = examples,
|
| 130 |
+
# fn = infer,
|
| 131 |
+
# inputs = [prompt],
|
| 132 |
+
# outputs = [result, seed],
|
| 133 |
+
# cache_examples="lazy"
|
| 134 |
+
# )
|
| 135 |
+
#
|
| 136 |
+
# gr.on(
|
| 137 |
+
# triggers=[run_button.click, prompt.submit],
|
| 138 |
+
# fn = infer,
|
| 139 |
+
# inputs = [prompt, seed, randomize_seed, width, height, num_inference_steps],
|
| 140 |
+
# outputs = [result, seed]
|
| 141 |
+
# )
|
| 142 |
+
#
|
| 143 |
+
#demo.launch()
|
| 144 |
+
#
|
| 145 |
+
#
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
# Force l'utilisation du CPU pour tout PyTorch
|
| 173 |
+
#torch.set_default_device("cpu")
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
#dtype = torch.bfloat16
|
| 177 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 178 |
+
#
|
| 179 |
+
#pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device)
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
|
| 192 |
+
def load_pdf(pdf_path):
|
| 193 |
+
"""Traite le texte d'un fichier PDF"""
|
| 194 |
+
if pdf_path is None:
|
| 195 |
+
return None
|
| 196 |
+
text = ""
|
| 197 |
+
try:
|
| 198 |
+
doc = fitz.open(pdf_path)
|
| 199 |
+
for page in doc:
|
| 200 |
+
text += page.get_text()
|
| 201 |
+
doc.close()
|
| 202 |
+
return text
|
| 203 |
+
except Exception as e:
|
| 204 |
+
print(f"Erreur lors de la lecture du PDF: {str(e)}")
|
| 205 |
+
return None
|
| 206 |
+
|
| 207 |
+
class FluxGenerator:
|
| 208 |
+
def __init__(self):
|
| 209 |
+
self.token = os.getenv('Authentification_HF')
|
| 210 |
+
if not self.token:
|
| 211 |
+
raise ValueError("Token d'authentification HuggingFace non trouvé")
|
| 212 |
+
login(self.token)
|
| 213 |
+
self.pipeline = None
|
| 214 |
+
self.device = "cpu" # Force l'utilisation du CPU
|
| 215 |
+
self.load_model()
|
| 216 |
+
|
| 217 |
+
def load_model(self):
|
| 218 |
+
"""Charge le modèle FLUX avec des paramètres optimisés pour CPU"""
|
| 219 |
+
try:
|
| 220 |
+
print("Chargement du modèle FLUX sur CPU...")
|
| 221 |
+
# Configuration spécifique pour CPU
|
| 222 |
+
torch.set_grad_enabled(False) # Désactive le calcul des gradients
|
| 223 |
+
|
| 224 |
+
self.pipeline = FluxPipeline.from_pretrained(
|
| 225 |
+
"black-forest-labs/FLUX.1-schnell",
|
| 226 |
+
revision="refs/pr/1",
|
| 227 |
+
torch_dtype=torch.float32 # Utilise float32 au lieu de bfloat16 pour meilleure compatibilité CPU
|
| 228 |
+
)
|
| 229 |
+
# device_map={"cpu": self.device} # Force tous les composants sur CPU
|
| 230 |
+
# )device
|
| 231 |
+
|
| 232 |
+
# Désactive les optimisations GPU
|
| 233 |
+
self.pipeline.to(self.device)
|
| 234 |
+
print(f"Utilisation forcée du CPU")
|
| 235 |
+
print("Modèle FLUX chargé avec succès!")
|
| 236 |
+
|
| 237 |
+
except Exception as e:
|
| 238 |
+
print(f"Erreur lors du chargement du modèle: {str(e)}")
|
| 239 |
+
raise
|
| 240 |
+
|
| 241 |
+
def generate_image(self, prompt, reference_image=None, pdf_file=None):
|
| 242 |
+
"""Génère une image à partir d'un prompt et optionnellement une référence"""
|
| 243 |
+
try:
|
| 244 |
+
# Si un PDF est fourni, ajoute son contenu au prompt
|
| 245 |
+
if pdf_file is not None:
|
| 246 |
+
pdf_text = load_pdf(pdf_file)
|
| 247 |
+
if pdf_text:
|
| 248 |
+
prompt = f"{prompt}\nContexte du PDF:\n{pdf_text}"
|
| 249 |
+
|
| 250 |
+
# Configuration pour génération sur CPU
|
| 251 |
+
with torch.no_grad(): # Désactive le calcul des gradients pendant la génération
|
| 252 |
+
image = self.pipeline(
|
| 253 |
+
prompt=prompt,
|
| 254 |
+
num_inference_steps=20, # Réduit le nombre d'étapes pour accélérer sur CPU
|
| 255 |
+
guidance_scale=0.0,
|
| 256 |
+
max_sequence_length=256,
|
| 257 |
+
generator=torch.Generator(device=self.device).manual_seed(0)
|
| 258 |
+
).images[0]
|
| 259 |
+
|
| 260 |
+
return image
|
| 261 |
+
|
| 262 |
+
except Exception as e:
|
| 263 |
+
print(f"Erreur lors de la génération de l'image: {str(e)}")
|
| 264 |
+
return None
|
| 265 |
+
|
| 266 |
+
# Instance globale du générateur
|
| 267 |
+
generator = FluxGenerator()
|
| 268 |
+
|
| 269 |
+
def generate(prompt, reference_file):
|
| 270 |
+
"""Fonction de génération pour l'interface Gradio"""
|
| 271 |
+
try:
|
| 272 |
+
# Gestion du fichier de référence
|
| 273 |
+
if reference_file is not None:
|
| 274 |
+
if isinstance(reference_file, dict): # Si le fichier est fourni par Gradio
|
| 275 |
+
file_path = reference_file.name
|
| 276 |
+
else: # Si c'est un chemin direct
|
| 277 |
+
file_path = reference_file
|
| 278 |
+
|
| 279 |
+
file_type = file_path.split('.')[-1].lower()
|
| 280 |
+
if file_type in ['pdf']:
|
| 281 |
+
return generator.generate_image(prompt, pdf_file=file_path)
|
| 282 |
+
elif file_type in ['png', 'jpg', 'jpeg']:
|
| 283 |
+
return generator.generate_image(prompt, reference_image=file_path)
|
| 284 |
+
|
| 285 |
+
# Génération sans référence
|
| 286 |
+
return generator.generate_image(prompt)
|
| 287 |
+
|
| 288 |
+
except Exception as e:
|
| 289 |
+
print(f"Erreur détaillée: {str(e)}")
|
| 290 |
+
return None
|
| 291 |
+
|
| 292 |
+
# Interface Gradio simple
|
| 293 |
+
demo = gr.Interface(
|
| 294 |
+
fn=generate,
|
| 295 |
+
inputs=[
|
| 296 |
+
gr.Textbox(label="Prompt", placeholder="Décrivez l'image que vous souhaitez générer..."),
|
| 297 |
+
gr.File(label="Image ou PDF de référence (optionnel)", type="file")
|
| 298 |
+
],
|
| 299 |
+
outputs=gr.Image(label="Image générée"),
|
| 300 |
+
title="Test du modèle FLUX (CPU)",
|
| 301 |
+
description="Interface simple pour tester la génération d'images avec FLUX (optimisé pour CPU)"
|
| 302 |
+
)
|
| 303 |
+
|
| 304 |
+
if __name__ == "__main__":
|
| 305 |
+
demo.launch()
|