MisterAI commited on
Commit
13eeca7
·
verified ·
1 Parent(s): 8703e7d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +182 -6
app.py CHANGED
@@ -1,5 +1,5 @@
1
- ###TEST02 JUSTE CHARGER FLUX-SCHNELL
2
- ###
3
  ###
4
  import os
5
  import gradio as gr
@@ -9,9 +9,185 @@ import torch
9
  from PIL import Image
10
  import fitz # PyMuPDF pour la gestion des PDF
11
  import sentencepiece
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
 
13
  # Force l'utilisation du CPU pour tout PyTorch
14
- torch.set_default_device("cpu")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
 
16
  def load_pdf(pdf_path):
17
  """Traite le texte d'un fichier PDF"""
@@ -48,9 +224,9 @@ class FluxGenerator:
48
  self.pipeline = FluxPipeline.from_pretrained(
49
  "black-forest-labs/FLUX.1-schnell",
50
  revision="refs/pr/1",
51
- torch_dtype=torch.float32, # Utilise float32 au lieu de bfloat16 pour meilleure compatibilité CPU
52
- device_map={"auto": self.device} # Force tous les composants sur CPU
53
- )
54
 
55
  # Désactive les optimisations GPU
56
  self.pipeline.to(self.device)
 
1
+ ###TEST03 JUSTE CHARGER FLUX-SCHNELL
2
+ ###https://huggingface.co/spaces/black-forest-labs/FLUX.1-schnell/blob/main/app.py
3
  ###
4
  import os
5
  import gradio as gr
 
9
  from PIL import Image
10
  import fitz # PyMuPDF pour la gestion des PDF
11
  import sentencepiece
12
+
13
+ import numpy as np
14
+ import random
15
+ import spaces
16
+
17
+
18
+
19
+
20
+
21
+ #
22
+ #import gradio as gr
23
+ #import numpy as np
24
+ #import random
25
+ #import spaces
26
+ #import torch
27
+ #from diffusers import DiffusionPipeline
28
+ #
29
+ #dtype = torch.bfloat16
30
+ #device = "cuda" if torch.cuda.is_available() else "cpu"
31
+ #
32
+ #pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device)
33
+ #
34
+ #MAX_SEED = np.iinfo(np.int32).max
35
+ #MAX_IMAGE_SIZE = 2048
36
+ #
37
+ #@spaces.GPU()
38
+ #def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
39
+ # if randomize_seed:
40
+ # seed = random.randint(0, MAX_SEED)
41
+ # generator = torch.Generator().manual_seed(seed)
42
+ # image = pipe(
43
+ # prompt = prompt,
44
+ # width = width,
45
+ # height = height,
46
+ # num_inference_steps = num_inference_steps,
47
+ # generator = generator,
48
+ # guidance_scale=0.0
49
+ # ).images[0]
50
+ # return image, seed
51
+ #
52
+ #examples = [
53
+ # "a tiny astronaut hatching from an egg on the moon",
54
+ # "a cat holding a sign that says hello world",
55
+ # "an anime illustration of a wiener schnitzel",
56
+ #]
57
+ #
58
+ #css="""
59
+ ##col-container {
60
+ # margin: 0 auto;
61
+ # max-width: 520px;
62
+ #}
63
+ #"""
64
+ #
65
+ #with gr.Blocks(css=css) as demo:
66
+ #
67
+ # with gr.Column(elem_id="col-container"):
68
+ # gr.Markdown(f"""# FLUX.1 [schnell]
69
+ #12B param rectified flow transformer distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) for 4 step generation
70
+ #[[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-schnell)]
71
+ # """)
72
+ #
73
+ # with gr.Row():
74
+ #
75
+ # prompt = gr.Text(
76
+ # label="Prompt",
77
+ # show_label=False,
78
+ # max_lines=1,
79
+ # placeholder="Enter your prompt",
80
+ # container=False,
81
+ # )
82
+ #
83
+ # run_button = gr.Button("Run", scale=0)
84
+ #
85
+ # result = gr.Image(label="Result", show_label=False)
86
+ #
87
+ # with gr.Accordion("Advanced Settings", open=False):
88
+ #
89
+ # seed = gr.Slider(
90
+ # label="Seed",
91
+ # minimum=0,
92
+ # maximum=MAX_SEED,
93
+ # step=1,
94
+ # value=0,
95
+ # )
96
+ #
97
+ # randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
98
+ #
99
+ # with gr.Row():
100
+ #
101
+ # width = gr.Slider(
102
+ # label="Width",
103
+ # minimum=256,
104
+ # maximum=MAX_IMAGE_SIZE,
105
+ # step=32,
106
+ # value=1024,
107
+ # )
108
+ #
109
+ # height = gr.Slider(
110
+ # label="Height",
111
+ # minimum=256,
112
+ # maximum=MAX_IMAGE_SIZE,
113
+ # step=32,
114
+ # value=1024,
115
+ # )
116
+ #
117
+ # with gr.Row():
118
+ #
119
+ #
120
+ # num_inference_steps = gr.Slider(
121
+ # label="Number of inference steps",
122
+ # minimum=1,
123
+ # maximum=50,
124
+ # step=1,
125
+ # value=4,
126
+ # )
127
+ #
128
+ # gr.Examples(
129
+ # examples = examples,
130
+ # fn = infer,
131
+ # inputs = [prompt],
132
+ # outputs = [result, seed],
133
+ # cache_examples="lazy"
134
+ # )
135
+ #
136
+ # gr.on(
137
+ # triggers=[run_button.click, prompt.submit],
138
+ # fn = infer,
139
+ # inputs = [prompt, seed, randomize_seed, width, height, num_inference_steps],
140
+ # outputs = [result, seed]
141
+ # )
142
+ #
143
+ #demo.launch()
144
+ #
145
+ #
146
+
147
+
148
+
149
+
150
+
151
+
152
+
153
+
154
+
155
+
156
+
157
+
158
+
159
+
160
+
161
+
162
+
163
+
164
+
165
+
166
+
167
+
168
+
169
+
170
+
171
 
172
  # Force l'utilisation du CPU pour tout PyTorch
173
+ #torch.set_default_device("cpu")
174
+
175
+
176
+ #dtype = torch.bfloat16
177
+ device = "cuda" if torch.cuda.is_available() else "cpu"
178
+ #
179
+ #pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device)
180
+
181
+
182
+
183
+
184
+
185
+
186
+
187
+
188
+
189
+
190
+
191
 
192
  def load_pdf(pdf_path):
193
  """Traite le texte d'un fichier PDF"""
 
224
  self.pipeline = FluxPipeline.from_pretrained(
225
  "black-forest-labs/FLUX.1-schnell",
226
  revision="refs/pr/1",
227
+ torch_dtype=torch.float32 # Utilise float32 au lieu de bfloat16 pour meilleure compatibilité CPU
228
+ # device_map={"cpu": self.device} # Force tous les composants sur CPU
229
+ )device
230
 
231
  # Désactive les optimisations GPU
232
  self.pipeline.to(self.device)