Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,378 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
from huggingface_hub import hf_hub_download, login
|
4 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoPipeline
|
5 |
+
from pptx import Presentation
|
6 |
+
from pptx.util import Inches, Pt
|
7 |
+
from pptx.enum.text import PP_ALIGN
|
8 |
+
import torch
|
9 |
+
from llama_cpp import Llama
|
10 |
+
import time
|
11 |
+
from PIL import Image
|
12 |
+
import io
|
13 |
+
import requests
|
14 |
+
|
15 |
+
# Configuration des modèles disponibles
|
16 |
+
TEXT_MODELS = {
|
17 |
+
"Mistral Small 24B (GGUF)": "MisterAI/Bartowski_MistralAI_Mistral-Small-24B-Base-2501-GGUF",
|
18 |
+
"Mixtral 8x7B": "mistralai/Mixtral-8x7B-v0.1",
|
19 |
+
"Lucie 7B": "OpenLLM-France/Lucie-7B"
|
20 |
+
}
|
21 |
+
|
22 |
+
IMAGE_MODELS = {
|
23 |
+
"FLUX.1": "black-forest-labs/FLUX.1-schnell",
|
24 |
+
"ArtifyAI": "ImageInception/ArtifyAI-v1.1"
|
25 |
+
}
|
26 |
+
|
27 |
+
# Préprompt amélioré pour une meilleure structuration
|
28 |
+
PREPROMPT = """Vous êtes un assistant IA expert en création de présentations PowerPoint professionnelles.
|
29 |
+
Générez une présentation structurée et détaillée en suivant ce format EXACT:
|
30 |
+
|
31 |
+
TITRE: [Titre principal de la présentation]
|
32 |
+
|
33 |
+
DIAPO 1:
|
34 |
+
Titre: [Titre de la diapo]
|
35 |
+
Points:
|
36 |
+
- Point 1
|
37 |
+
- Point 2
|
38 |
+
- Point 3
|
39 |
+
Image: [Description détaillée de l'image souhaitée pour cette diapo]
|
40 |
+
|
41 |
+
DIAPO 2:
|
42 |
+
Titre: [Titre de la diapo]
|
43 |
+
Points:
|
44 |
+
- Point 1
|
45 |
+
- Point 2
|
46 |
+
- Point 3
|
47 |
+
Image: [Description détaillée de l'image souhaitée pour cette diapo]
|
48 |
+
|
49 |
+
[Continuez avec ce format pour chaque diapositive]
|
50 |
+
|
51 |
+
Analysez le texte suivant et créez une présentation professionnelle avec des descriptions d'images pertinentes :"""
|
52 |
+
|
53 |
+
class PresentationGenerator:
|
54 |
+
def __init__(self):
|
55 |
+
self.token = os.getenv('Authentification_HF')
|
56 |
+
if not self.token:
|
57 |
+
raise ValueError("Token d'authentification HuggingFace non trouvé")
|
58 |
+
login(self.token)
|
59 |
+
self.text_model = None
|
60 |
+
self.text_tokenizer = None
|
61 |
+
self.image_pipeline = None
|
62 |
+
|
63 |
+
def load_text_model(self, model_name):
|
64 |
+
"""Charge le modèle de génération de texte"""
|
65 |
+
model_id = TEXT_MODELS[model_name]
|
66 |
+
if model_id.endswith('.gguf'):
|
67 |
+
# Configuration pour les modèles GGUF
|
68 |
+
model_path = hf_hub_download(
|
69 |
+
repo_id=model_id.split('/')[0] + '/' + model_id.split('/')[1],
|
70 |
+
filename=model_id.split('/')[-1],
|
71 |
+
token=self.token
|
72 |
+
)
|
73 |
+
self.text_model = Llama(
|
74 |
+
model_path=model_path,
|
75 |
+
n_ctx=4096,
|
76 |
+
n_batch=512,
|
77 |
+
verbose=False
|
78 |
+
)
|
79 |
+
else:
|
80 |
+
# Configuration pour les modèles Transformers standards
|
81 |
+
self.text_tokenizer = AutoTokenizer.from_pretrained(model_id, token=self.token)
|
82 |
+
self.text_model = AutoModelForCausalLM.from_pretrained(
|
83 |
+
model_id,
|
84 |
+
torch_dtype=torch.bfloat16,
|
85 |
+
device_map="auto",
|
86 |
+
token=self.token
|
87 |
+
)
|
88 |
+
|
89 |
+
def load_image_model(self, model_name):
|
90 |
+
"""Charge le modèle de génération d'images"""
|
91 |
+
model_id = IMAGE_MODELS[model_name]
|
92 |
+
self.image_pipeline = AutoPipeline.from_pretrained(
|
93 |
+
model_id,
|
94 |
+
token=self.token
|
95 |
+
)
|
96 |
+
|
97 |
+
def generate_text(self, prompt, temperature=0.7, max_tokens=4096):
|
98 |
+
"""Génère le texte de la présentation"""
|
99 |
+
if isinstance(self.text_model, Llama):
|
100 |
+
response = self.text_model(
|
101 |
+
prompt,
|
102 |
+
max_tokens=max_tokens,
|
103 |
+
temperature=temperature,
|
104 |
+
echo=False
|
105 |
+
)
|
106 |
+
return response['choices'][0]['text']
|
107 |
+
else:
|
108 |
+
inputs = self.text_tokenizer.apply_chat_template(
|
109 |
+
[{"role": "user", "content": prompt}],
|
110 |
+
return_tensors="pt",
|
111 |
+
return_dict=True
|
112 |
+
)
|
113 |
+
outputs = self.text_model.generate(
|
114 |
+
**inputs,
|
115 |
+
max_new_tokens=max_tokens,
|
116 |
+
temperature=temperature
|
117 |
+
)
|
118 |
+
return self.text_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
119 |
+
|
120 |
+
def generate_image(self, prompt, negative_prompt="", num_inference_steps=30):
|
121 |
+
"""Génère une image pour la diapositive"""
|
122 |
+
try:
|
123 |
+
image = self.image_pipeline(
|
124 |
+
prompt=prompt,
|
125 |
+
negative_prompt=negative_prompt,
|
126 |
+
num_inference_steps=num_inference_steps
|
127 |
+
).images[0]
|
128 |
+
return image
|
129 |
+
except Exception as e:
|
130 |
+
print(f"Erreur lors de la génération de l'image: {str(e)}")
|
131 |
+
return None
|
132 |
+
|
133 |
+
def parse_presentation_content(self, content):
|
134 |
+
"""Parse le contenu généré en sections pour les diapositives"""
|
135 |
+
slides = []
|
136 |
+
current_slide = None
|
137 |
+
|
138 |
+
for line in content.split('\n'):
|
139 |
+
line = line.strip()
|
140 |
+
if line.startswith('TITRE:'):
|
141 |
+
slides.append({'type': 'title', 'title': line[6:].strip()})
|
142 |
+
elif line.startswith('DIAPO'):
|
143 |
+
if current_slide:
|
144 |
+
slides.append(current_slide)
|
145 |
+
current_slide = {'type': 'content', 'title': '', 'points': [], 'image_prompt': ''}
|
146 |
+
elif line.startswith('Titre:') and current_slide:
|
147 |
+
current_slide['title'] = line[6:].strip()
|
148 |
+
elif line.startswith('- ') and current_slide:
|
149 |
+
current_slide['points'].append(line[2:].strip())
|
150 |
+
elif line.startswith('Image:') and current_slide:
|
151 |
+
current_slide['image_prompt'] = line[6:].strip()
|
152 |
+
|
153 |
+
if current_slide:
|
154 |
+
slides.append(current_slide)
|
155 |
+
|
156 |
+
return slides
|
157 |
+
|
158 |
+
def create_presentation(self, slides):
|
159 |
+
"""Crée la présentation PowerPoint avec texte et images"""
|
160 |
+
prs = Presentation()
|
161 |
+
|
162 |
+
# Première diapo (titre)
|
163 |
+
title_slide = prs.slides.add_slide(prs.slide_layouts[0])
|
164 |
+
title_slide.shapes.title.text = slides[0]['title']
|
165 |
+
|
166 |
+
# Autres diapos
|
167 |
+
for slide in slides[1:]:
|
168 |
+
content_slide = prs.slides.add_slide(prs.slide_layouts[1])
|
169 |
+
content_slide.shapes.title.text = slide['title']
|
170 |
+
|
171 |
+
# Ajout du texte
|
172 |
+
if slide['points']:
|
173 |
+
body = content_slide.shapes.placeholders[1].text_frame
|
174 |
+
body.clear()
|
175 |
+
for point in slide['points']:
|
176 |
+
p = body.add_paragraph()
|
177 |
+
p.text = point
|
178 |
+
p.level = 0
|
179 |
+
|
180 |
+
# Ajout de l'image si disponible
|
181 |
+
if slide.get('image_prompt'):
|
182 |
+
image = self.generate_image(slide['image_prompt'])
|
183 |
+
if image:
|
184 |
+
# Sauvegarde temporaire de l'image
|
185 |
+
img_path = f"temp_slide_{slides.index(slide)}.png"
|
186 |
+
image.save(img_path)
|
187 |
+
|
188 |
+
# Ajout de l'image à la diapositive
|
189 |
+
left = Inches(1)
|
190 |
+
top = Inches(2.5)
|
191 |
+
content_slide.shapes.add_picture(img_path, left, top, height=Inches(4))
|
192 |
+
|
193 |
+
# Suppression du fichier temporaire
|
194 |
+
os.remove(img_path)
|
195 |
+
|
196 |
+
return prs
|
197 |
+
|
198 |
+
def generate_presentation_with_progress(text, text_model_name, image_model_name, temperature, max_tokens, negative_prompt):
|
199 |
+
"""Fonction principale de génération avec suivi de progression"""
|
200 |
+
try:
|
201 |
+
start_time = time.time()
|
202 |
+
generator = PresentationGenerator()
|
203 |
+
|
204 |
+
# Chargement des modèles
|
205 |
+
yield "Chargement des modèles...", None, None
|
206 |
+
generator.load_text_model(text_model_name)
|
207 |
+
generator.load_image_model(image_model_name)
|
208 |
+
|
209 |
+
# Génération du contenu
|
210 |
+
yield "Génération du contenu de la présentation...", None, None
|
211 |
+
full_prompt = PREPROMPT + "\n\n" + text
|
212 |
+
generated_content = generator.generate_text(full_prompt, temperature, max_tokens)
|
213 |
+
|
214 |
+
# Création de la présentation
|
215 |
+
yield "Création de la présentation PowerPoint...", generated_content, None
|
216 |
+
slides = generator.parse_presentation_content(generated_content)
|
217 |
+
prs = generator.create_presentation(slides)
|
218 |
+
|
219 |
+
# Sauvegarde
|
220 |
+
output_path = "presentation.pptx"
|
221 |
+
prs.save(output_path)
|
222 |
+
|
223 |
+
execution_time = time.time() - start_time
|
224 |
+
status = f"Présentation générée avec succès en {execution_time:.2f} secondes!"
|
225 |
+
|
226 |
+
return status, generated_content, output_path
|
227 |
+
|
228 |
+
except Exception as e:
|
229 |
+
return f"Erreur: {str(e)}", None, None
|
230 |
+
|
231 |
+
# Interface Gradio améliorée
|
232 |
+
css = """
|
233 |
+
/* Thème sombre personnalisé */
|
234 |
+
.gradio-container {
|
235 |
+
background-color: #000000 !important;
|
236 |
+
}
|
237 |
+
|
238 |
+
.gr-form, .gr-box, .gr-panel {
|
239 |
+
border-radius: 8px !important;
|
240 |
+
background-color: #1a1a1a !important;
|
241 |
+
border: 1px solid #333333 !important;
|
242 |
+
}
|
243 |
+
|
244 |
+
.gr-input, .gr-textarea, .gr-dropdown {
|
245 |
+
background-color: #2d2d2d !important;
|
246 |
+
color: #ffffff !important;
|
247 |
+
border: 1px solid #404040 !important;
|
248 |
+
}
|
249 |
+
|
250 |
+
.gr-button {
|
251 |
+
background-color: #2d2d2d !important;
|
252 |
+
color: #ffffff !important;
|
253 |
+
border: 1px solid #404040 !important;
|
254 |
+
transition: all 0.3s ease !important;
|
255 |
+
}
|
256 |
+
|
257 |
+
.gr-button:hover {
|
258 |
+
background-color: #404040 !important;
|
259 |
+
transform: translateY(-2px) !important;
|
260 |
+
}
|
261 |
+
|
262 |
+
/* Textes et labels */
|
263 |
+
h1, h2, h3, p, label, .gr-text {
|
264 |
+
color: #ffffff !important;
|
265 |
+
}
|
266 |
+
|
267 |
+
/* Scrollbar */
|
268 |
+
::-webkit-scrollbar {
|
269 |
+
width: 8px;
|
270 |
+
height: 8px;
|
271 |
+
}
|
272 |
+
|
273 |
+
::-webkit-scrollbar-track {
|
274 |
+
background: #1a1a1a;
|
275 |
+
}
|
276 |
+
|
277 |
+
::-webkit-scrollbar-thumb {
|
278 |
+
background: #404040;
|
279 |
+
border-radius: 4px;
|
280 |
+
}
|
281 |
+
|
282 |
+
::-webkit-scrollbar-thumb:hover {
|
283 |
+
background: #4a4a4a;
|
284 |
+
}
|
285 |
+
"""
|
286 |
+
|
287 |
+
with gr.Blocks(theme=gr.themes.Default(), css=css) as demo:
|
288 |
+
gr.Markdown(
|
289 |
+
"""
|
290 |
+
# 🎯 Générateur de Présentations PowerPoint IA
|
291 |
+
|
292 |
+
Créez des présentations professionnelles automatiquement avec l'aide de l'IA.
|
293 |
+
"""
|
294 |
+
)
|
295 |
+
|
296 |
+
with gr.Row():
|
297 |
+
with gr.Column(scale=1):
|
298 |
+
text_model_choice = gr.Dropdown(
|
299 |
+
choices=list(TEXT_MODELS.keys()),
|
300 |
+
value=list(TEXT_MODELS.keys())[0],
|
301 |
+
label="Modèle de génération de texte"
|
302 |
+
)
|
303 |
+
image_model_choice = gr.Dropdown(
|
304 |
+
choices=list(IMAGE_MODELS.keys()),
|
305 |
+
value=list(IMAGE_MODELS.keys())[0],
|
306 |
+
label="Modèle de génération d'images"
|
307 |
+
)
|
308 |
+
temperature = gr.Slider(
|
309 |
+
minimum=0.1,
|
310 |
+
maximum=1.0,
|
311 |
+
value=0.7,
|
312 |
+
step=0.1,
|
313 |
+
label="Température"
|
314 |
+
)
|
315 |
+
max_tokens = gr.Slider(
|
316 |
+
minimum=1000,
|
317 |
+
maximum=4096,
|
318 |
+
value=2048,
|
319 |
+
step=256,
|
320 |
+
label="Tokens maximum"
|
321 |
+
)
|
322 |
+
negative_prompt = gr.Textbox(
|
323 |
+
lines=2,
|
324 |
+
label="Prompt négatif pour les images",
|
325 |
+
placeholder="Ce que vous ne voulez pas voir dans les images..."
|
326 |
+
)
|
327 |
+
|
328 |
+
with gr.Row():
|
329 |
+
with gr.Column(scale=2):
|
330 |
+
input_text = gr.Textbox(
|
331 |
+
lines=10,
|
332 |
+
label="Votre texte",
|
333 |
+
placeholder="Décrivez le contenu que vous souhaitez pour votre présentation..."
|
334 |
+
)
|
335 |
+
file_upload = gr.File(
|
336 |
+
label="Documents de référence (PDF, Images)",
|
337 |
+
file_types=["pdf", "png", "jpg", "jpeg"],
|
338 |
+
multiple=True
|
339 |
+
)
|
340 |
+
|
341 |
+
with gr.Row():
|
342 |
+
generate_btn = gr.Button("🚀 Générer la présentation", variant="primary")
|
343 |
+
|
344 |
+
with gr.Row():
|
345 |
+
with gr.Column():
|
346 |
+
status_output = gr.Textbox(
|
347 |
+
label="Statut",
|
348 |
+
lines=2
|
349 |
+
)
|
350 |
+
generated_content = gr.Textbox(
|
351 |
+
label="Contenu généré",
|
352 |
+
lines=10,
|
353 |
+
show_copy_button=True
|
354 |
+
)
|
355 |
+
output_file = gr.File(
|
356 |
+
label="Présentation PowerPoint"
|
357 |
+
)
|
358 |
+
|
359 |
+
generate_btn.click(
|
360 |
+
fn=generate_presentation_with_progress,
|
361 |
+
inputs=[
|
362 |
+
input_text,
|
363 |
+
text_model_choice,
|
364 |
+
image_model_choice,
|
365 |
+
temperature,
|
366 |
+
max_tokens,
|
367 |
+
negative_prompt
|
368 |
+
],
|
369 |
+
outputs=[
|
370 |
+
status_output,
|
371 |
+
generated_content,
|
372 |
+
output_file
|
373 |
+
]
|
374 |
+
)
|
375 |
+
|
376 |
+
if __name__ == "__main__":
|
377 |
+
demo.launch()
|
378 |
+
|