###TEST03 JUSTE CHARGER FLUX-SCHNELL
###https://huggingface.co/spaces/black-forest-labs/FLUX.1-schnell/blob/main/app.py
###
import os
import gradio as gr
from huggingface_hub import login
from diffusers import FluxPipeline
import torch
from PIL import Image
import fitz  # PyMuPDF pour la gestion des PDF
import sentencepiece

import numpy as np
import random
import spaces





#
#import gradio as gr
#import numpy as np
#import random
#import spaces
#import torch
#from diffusers import DiffusionPipeline
#
#dtype = torch.bfloat16
#device = "cuda" if torch.cuda.is_available() else "cpu"
#
#pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device)
#
#MAX_SEED = np.iinfo(np.int32).max
#MAX_IMAGE_SIZE = 2048
#
#@spaces.GPU()
#def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
#    if randomize_seed:
#        seed = random.randint(0, MAX_SEED)
#    generator = torch.Generator().manual_seed(seed)
#    image = pipe(
#            prompt = prompt, 
#            width = width,
#            height = height,
#            num_inference_steps = num_inference_steps, 
#            generator = generator,
#            guidance_scale=0.0
#    ).images[0] 
#    return image, seed
# 
#examples = [
#    "a tiny astronaut hatching from an egg on the moon",
#    "a cat holding a sign that says hello world",
#    "an anime illustration of a wiener schnitzel",
#]
#
#css="""
##col-container {
#    margin: 0 auto;
#    max-width: 520px;
#}
#"""
#
#with gr.Blocks(css=css) as demo:
#    
#    with gr.Column(elem_id="col-container"):
#        gr.Markdown(f"""# FLUX.1 [schnell]
#12B param rectified flow transformer distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) for 4 step generation
#[[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-schnell)]
#        """)
#        
#        with gr.Row():
#            
#            prompt = gr.Text(
#                label="Prompt",
#                show_label=False,
#                max_lines=1,
#                placeholder="Enter your prompt",
#                container=False,
#            )
#            
#            run_button = gr.Button("Run", scale=0)
#        
#        result = gr.Image(label="Result", show_label=False)
#        
#        with gr.Accordion("Advanced Settings", open=False):
#            
#            seed = gr.Slider(
#                label="Seed",
#                minimum=0,
#                maximum=MAX_SEED,
#                step=1,
#                value=0,
#            )
#            
#            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
#            
#            with gr.Row():
#                
#                width = gr.Slider(
#                    label="Width",
#                    minimum=256,
#                    maximum=MAX_IMAGE_SIZE,
#                    step=32,
#                    value=1024,
#                )
#                
#                height = gr.Slider(
#                    label="Height",
#                    minimum=256,
#                    maximum=MAX_IMAGE_SIZE,
#                    step=32,
#                    value=1024,
#                )
#            
#            with gr.Row():
#                
#  
#                num_inference_steps = gr.Slider(
#                    label="Number of inference steps",
#                    minimum=1,
#                    maximum=50,
#                    step=1,
#                    value=4,
#                )
#        
#        gr.Examples(
#            examples = examples,
#            fn = infer,
#            inputs = [prompt],
#            outputs = [result, seed],
#            cache_examples="lazy"
#        )
#
#    gr.on(
#        triggers=[run_button.click, prompt.submit],
#        fn = infer,
#        inputs = [prompt, seed, randomize_seed, width, height, num_inference_steps],
#        outputs = [result, seed]
#    )
#
#demo.launch()
#
#


























# Force l'utilisation du CPU pour tout PyTorch
#torch.set_default_device("cpu")


#dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
#
#pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device)












def load_pdf(pdf_path):
    """Traite le texte d'un fichier PDF"""
    if pdf_path is None:
        return None
    text = ""
    try:
        doc = fitz.open(pdf_path)
        for page in doc:
            text += page.get_text()
        doc.close()
        return text
    except Exception as e:
        print(f"Erreur lors de la lecture du PDF: {str(e)}")
        return None

class FluxGenerator:
    def __init__(self):
        self.token = os.getenv('Authentification_HF')
        if not self.token:
            raise ValueError("Token d'authentification HuggingFace non trouvé")
        login(self.token)
        self.pipeline = None
        self.device = "cpu"  # Force l'utilisation du CPU
        self.load_model()

    def load_model(self):
        """Charge le modèle FLUX avec des paramètres optimisés pour CPU"""
        try:
            print("Chargement du modèle FLUX sur CPU...")
            # Configuration spécifique pour CPU
            torch.set_grad_enabled(False)  # Désactive le calcul des gradients
            
            self.pipeline = FluxPipeline.from_pretrained(
                "black-forest-labs/FLUX.1-schnell",
                revision="refs/pr/1",
                torch_dtype=torch.float32  # Utilise float32 au lieu de bfloat16 pour meilleure compatibilité CPU
            )
#                device_map={"cpu": self.device}  # Force tous les composants sur CPU
#            )device
            
            # Désactive les optimisations GPU
            self.pipeline.to(self.device)
            print(f"Utilisation forcée du CPU")
            print("Modèle FLUX chargé avec succès!")
            
        except Exception as e:
            print(f"Erreur lors du chargement du modèle: {str(e)}")
            raise

    def generate_image(self, prompt, reference_image=None, pdf_file=None):
        """Génère une image à partir d'un prompt et optionnellement une référence"""
        try:
            # Si un PDF est fourni, ajoute son contenu au prompt
            if pdf_file is not None:
                pdf_text = load_pdf(pdf_file)
                if pdf_text:
                    prompt = f"{prompt}\nContexte du PDF:\n{pdf_text}"

            # Configuration pour génération sur CPU
            with torch.no_grad():  # Désactive le calcul des gradients pendant la génération
                image = self.pipeline(
                    prompt=prompt,
                    num_inference_steps=20,  # Réduit le nombre d'étapes pour accélérer sur CPU
                    guidance_scale=0.0,
                    max_sequence_length=256,
                    generator=torch.Generator(device=self.device).manual_seed(0)
                ).images[0]

            return image

        except Exception as e:
            print(f"Erreur lors de la génération de l'image: {str(e)}")
            return None

# Instance globale du générateur
generator = FluxGenerator()

def generate(prompt, reference_file):
    """Fonction de génération pour l'interface Gradio"""
    try:
        # Gestion du fichier de référence
        if reference_file is not None:
            if isinstance(reference_file, dict):  # Si le fichier est fourni par Gradio
                file_path = reference_file.name
            else:  # Si c'est un chemin direct
                file_path = reference_file
                
            file_type = file_path.split('.')[-1].lower()
            if file_type in ['pdf']:
                return generator.generate_image(prompt, pdf_file=file_path)
            elif file_type in ['png', 'jpg', 'jpeg']:
                return generator.generate_image(prompt, reference_image=file_path)

        # Génération sans référence
        return generator.generate_image(prompt)

    except Exception as e:
        print(f"Erreur détaillée: {str(e)}")
        return None

# Interface Gradio simple
demo = gr.Interface(
    fn=generate,
    inputs=[
        gr.Textbox(label="Prompt", placeholder="Décrivez l'image que vous souhaitez générer..."),
        gr.File(label="Image ou PDF de référence (optionnel)", type="file")
    ],
    outputs=gr.Image(label="Image générée"),
    title="Test du modèle FLUX (CPU)",
    description="Interface simple pour tester la génération d'images avec FLUX (optimisé pour CPU)"
)

if __name__ == "__main__":
    demo.launch()