Spaces:
Runtime error
Runtime error
| import spaces | |
| import gradio as gr | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| import torch | |
| class ModelProcessor: | |
| def __init__(self, repo_id="HuggingFaceTB/cosmo-1b"): | |
| self.device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
| # Initialize the tokenizer | |
| self.tokenizer = AutoTokenizer.from_pretrained(repo_id, use_fast=True) | |
| # Initialize and configure the model | |
| self.model = AutoModelForCausalLM.from_pretrained( | |
| repo_id, torch_dtype=torch.float16, device_map={"": self.device}, trust_remote_code=True | |
| ) | |
| self.model.eval() # Set the model to evaluation mode | |
| # Set padding token as end-of-sequence token | |
| self.tokenizer.pad_token = self.tokenizer.eos_token | |
| def process_data_and_compute_statistics(self, prompt): | |
| # Tokenize the prompt and move to the device | |
| tokens = self.tokenizer( | |
| prompt, return_tensors="pt", truncation=True, max_length=512 | |
| ).to(self.model.device) | |
| # Get the model outputs and logits | |
| outputs = self.model(tokens["input_ids"]) | |
| logits = outputs.logits | |
| # Shift right to align with logits' prediction position | |
| shifted_labels = tokens["input_ids"][..., 1:].contiguous() | |
| shifted_logits = logits[..., :-1, :].contiguous() | |
| # Calculate entropy | |
| shifted_probs = torch.softmax(shifted_logits, dim=-1) | |
| shifted_log_probs = torch.log_softmax(shifted_logits, dim=-1) | |
| entropy = -torch.sum(shifted_probs * shifted_log_probs, dim=-1).squeeze() | |
| # Flatten the logits and labels | |
| logits_flat = shifted_logits.view(-1, shifted_logits.size(-1)) | |
| labels_flat = shifted_labels.view(-1) | |
| # Calculate the negative log-likelihood loss | |
| probabilities_flat = torch.softmax(logits_flat, dim=-1) | |
| true_class_probabilities = probabilities_flat.gather( | |
| 1, labels_flat.unsqueeze(1) | |
| ).squeeze(1) | |
| nll = -torch.log( | |
| true_class_probabilities.clamp(min=1e-9) | |
| ) # Clamp to prevent log(0) | |
| ranks = ( | |
| shifted_logits.argsort(dim=-1, descending=True) | |
| == shifted_labels.unsqueeze(-1) | |
| ).nonzero()[:, -1] | |
| if entropy.clamp(max=4).median() < 2.0: | |
| return 1 | |
| return 1 if (ranks.clamp(max=4) * nll.clamp(max=4)).mean() < 5.2 else 0 | |
| processor = ModelProcessor() | |
| def detect(prompt): | |
| prediction = processor.process_data_and_compute_statistics(prompt) | |
| if prediction == 1: | |
| return "The text is likely **generated** by a language model." | |
| else: | |
| return "The text is likely **not generated** by a language model." | |
| with gr.Blocks( | |
| css=""" | |
| .gradio-container { | |
| max-width: 800px; | |
| margin: 0 auto; | |
| } | |
| .gr-box { | |
| box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1); | |
| padding: 20px; | |
| border-radius: 4px; | |
| } | |
| .gr-button { | |
| background-color: #007bff; | |
| color: white; padding: 10px 20px; | |
| border-radius: 4px; | |
| } | |
| .gr-button:hover { | |
| background-color: } | |
| .hyperlinks a { | |
| margin-right: 10px; | |
| } | |
| """ | |
| ) as demo: | |
| with gr.Row(): | |
| with gr.Column(scale=3): | |
| gr.Markdown("# ENTELL Model Detection") | |
| gr.Markdown("Please visit my website for better detection quality [svenska-detektor.se](https://svenska-detektor.se)") | |
| with gr.Column(scale=1): | |
| gr.HTML( | |
| """ | |
| <p> | |
| <a href="" target="_blank">paper</a> | |
| <a href="" target="_blank">code</a> | |
| <a href="mailto:[email protected]" target="_blank">contact</a> | |
| """, | |
| elem_classes="hyperlinks", | |
| ) | |
| with gr.Row(): | |
| with gr.Column(): | |
| prompt = gr.Textbox( | |
| lines=8, | |
| placeholder="Type your prompt here...", | |
| label="Prompt", | |
| ) | |
| submit_btn = gr.Button("Submit", variant="primary") | |
| output = gr.Markdown() | |
| submit_btn.click(fn=detect, inputs=prompt, outputs=output) | |
| demo.launch() | |