import torch from diffusers.pipelines.hunyuan_video.pipeline_hunyuan_video import DEFAULT_PROMPT_TEMPLATE from diffusers_helper.utils import crop_or_pad_yield_mask @torch.no_grad() def encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2, max_length=256): assert isinstance(prompt, str) prompt = [prompt] # LLAMA prompt_llama = [DEFAULT_PROMPT_TEMPLATE["template"].format(p) for p in prompt] crop_start = DEFAULT_PROMPT_TEMPLATE["crop_start"] llama_inputs = tokenizer( prompt_llama, padding="max_length", max_length=max_length + crop_start, truncation=True, return_tensors="pt", return_length=False, return_overflowing_tokens=False, return_attention_mask=True, ) llama_input_ids = llama_inputs.input_ids.to(text_encoder.device) llama_attention_mask = llama_inputs.attention_mask.to(text_encoder.device) llama_attention_length = int(llama_attention_mask.sum()) llama_outputs = text_encoder( input_ids=llama_input_ids, attention_mask=llama_attention_mask, output_hidden_states=True, ) llama_vec = llama_outputs.hidden_states[-3][:, crop_start:llama_attention_length] # llama_vec_remaining = llama_outputs.hidden_states[-3][:, llama_attention_length:] llama_attention_mask = llama_attention_mask[:, crop_start:llama_attention_length] assert torch.all(llama_attention_mask.bool()) # CLIP clip_l_input_ids = tokenizer_2( prompt, padding="max_length", max_length=77, truncation=True, return_overflowing_tokens=False, return_length=False, return_tensors="pt", ).input_ids clip_l_pooler = text_encoder_2(clip_l_input_ids.to(text_encoder_2.device), output_hidden_states=False).pooler_output return llama_vec, clip_l_pooler @torch.no_grad() def vae_decode_fake(latents): latent_rgb_factors = [ [-0.0395, -0.0331, 0.0445], [0.0696, 0.0795, 0.0518], [0.0135, -0.0945, -0.0282], [0.0108, -0.0250, -0.0765], [-0.0209, 0.0032, 0.0224], [-0.0804, -0.0254, -0.0639], [-0.0991, 0.0271, -0.0669], [-0.0646, -0.0422, -0.0400], [-0.0696, -0.0595, -0.0894], [-0.0799, -0.0208, -0.0375], [0.1166, 0.1627, 0.0962], [0.1165, 0.0432, 0.0407], [-0.2315, -0.1920, -0.1355], [-0.0270, 0.0401, -0.0821], [-0.0616, -0.0997, -0.0727], [0.0249, -0.0469, -0.1703] ] # From comfyui latent_rgb_factors_bias = [0.0259, -0.0192, -0.0761] weight = torch.tensor(latent_rgb_factors, device=latents.device, dtype=latents.dtype).transpose(0, 1)[:, :, None, None, None] bias = torch.tensor(latent_rgb_factors_bias, device=latents.device, dtype=latents.dtype) images = torch.nn.functional.conv3d(latents, weight, bias=bias, stride=1, padding=0, dilation=1, groups=1) images = images.clamp(0.0, 1.0) return images @torch.no_grad() def vae_decode(latents, vae, image_mode=False): latents = latents / vae.config.scaling_factor if not image_mode: image = vae.decode(latents.to(device=vae.device, dtype=vae.dtype)).sample else: latents = latents.to(device=vae.device, dtype=vae.dtype).unbind(2) image = [vae.decode(l.unsqueeze(2)).sample for l in latents] image = torch.cat(image, dim=2) return image @torch.no_grad() def vae_encode(image, vae): latents = vae.encode(image.to(device=vae.device, dtype=vae.dtype)).latent_dist.sample() latents = latents * vae.config.scaling_factor return latents