|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
from peft import PeftModel |
|
import gradio as gr |
|
|
|
model = AutoModelForCausalLM.from_pretrained("internlm/internlm-7b",trust_remote_code=True) |
|
model = PeftModel.from_pretrained(model, "fadliaulawi/internlm-7b-finetuned") |
|
tokenizer = AutoTokenizer.from_pretrained("internlm/internlm-7b", padding_side="left", use_fast = False,trust_remote_code=True) |
|
|
|
def generate_prompt( |
|
instruction, input, label |
|
): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template = { |
|
"description": "Template used by Alpaca-LoRA.", |
|
"prompt_input": "Di bawah ini adalah instruksi yang menjelaskan tugas, dipasangkan dengan masukan yang memberikan konteks lebih lanjut. Tulis tanggapan yang melengkapi permintaan dengan tepat.\n\n### Instruksi:\n{instruction}\n\n### Masukan:\n{input}", |
|
|
|
"response_split": "### Tanggapan:" |
|
} |
|
|
|
if input: |
|
res = template["prompt_input"].format(instruction=instruction, input=input) |
|
|
|
|
|
|
|
res = f"{res} \n\n### Tanggapan:\n" |
|
if label: |
|
res = f"{res}{label}" |
|
|
|
return res |
|
|
|
def user(message, history): |
|
return "", history + [[message, None]] |
|
|
|
def generate_and_tokenize_prompt(data_point): |
|
full_prompt = generate_prompt( |
|
data_point["instruction"], |
|
data_point["input"], |
|
data_point["output"], |
|
) |
|
|
|
|
|
cutoff_len = 256 |
|
tokenizer.pad_token = tokenizer.eos_token |
|
result = tokenizer( |
|
full_prompt, |
|
truncation=True, |
|
max_length=cutoff_len, |
|
padding=True, |
|
return_tensors=None, |
|
) |
|
|
|
if (result["input_ids"][-1] != tokenizer.eos_token_id and len(result["input_ids"]) < cutoff_len): |
|
result["input_ids"].append(tokenizer.eos_token_id) |
|
result["attention_mask"].append(1) |
|
|
|
|
|
return result |
|
|
|
def bot(history,temperature, max_new_tokens, top_p,top_k): |
|
user_message = history[-1][0] |
|
data = { |
|
'instruction': "Jika Anda seorang dokter, silakan menjawab pertanyaan medis berdasarkan deskripsi pasien.", |
|
'input': user_message, |
|
'output': '' |
|
} |
|
|
|
new_user_input_ids = generate_and_tokenize_prompt(data) |
|
|
|
|
|
bot_input_ids = torch.LongTensor([new_user_input_ids['input_ids']]) |
|
|
|
|
|
response = model.generate( |
|
input_ids=bot_input_ids, |
|
pad_token_id=tokenizer.eos_token_id, |
|
temperature = float(temperature), |
|
max_new_tokens=max_new_tokens, |
|
top_p=float(top_p), |
|
top_k=top_k, |
|
do_sample=True |
|
) |
|
|
|
|
|
response = tokenizer.batch_decode(response, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] |
|
sections = response.split("###") |
|
response = sections[3] |
|
response=response.split("Tanggapan:")[1].strip() |
|
history[-1][1] = response |
|
return history |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown( |
|
"""# ChatDoctor - InternLM 7b 🩺 |
|
|
|
A [ChatDoctor - InternLM 7b](https://huggingface.co/fadliaulawi/internlm-7b-finetuned) demo. |
|
From the [InternLM 7b](https://huggingface.co/internlm/internlm-7b) model and finetuned on the Indonesian translation of [ChatDoctor](https://github.com/Kent0n-Li/ChatDoctor) dataset. |
|
|
|
""" |
|
) |
|
|
|
chatbot = gr.Chatbot() |
|
msg = gr.Textbox() |
|
submit = gr.Button("Submit") |
|
clear = gr.Button("Clear") |
|
examples = gr.Examples(examples=["Dokter, aku mengalami kelelahan akhir-akhir ini.", "Dokter, aku merasa pusing, lemah dan sakit dada tajam akhir-akhir ini.", |
|
"Dokter, aku merasa sangat depresi akhir-akhir ini dan juga mengalami perubahan suhu tubuhku.", |
|
"Dokter, saya sudah beberapa minggu mengalami suara serak dan tidak kunjung membaik meski sudah minum obat. Apa masalahnya?" |
|
],inputs=[msg]) |
|
|
|
gr.Markdown( |
|
"""## Adjust the additional inputs:""" |
|
) |
|
|
|
temperature = gr.Slider(0, 5, value=0.8, step=0.1, label='Temperature',info="Controls randomness, higher values increase diversity.") |
|
max_length = gr.Slider(0, 1024, value=50, step=1, label='Max Length',info="The maximum numbers of output's tokens.") |
|
top_p = gr.Slider(0, 1, value=0.8, step=0.1, label='Top P',info="The cumulative probability cutoff for token selection. Lower values mean sampling from a smaller, more top-weighted nucleus.") |
|
top_k = gr.Slider(0, 50, value=10, step=1, label='Top K',info="Sample from the k most likely next tokens at each step. Lower k focuses on higher probability tokens.") |
|
|
|
submit.click(user, [msg, chatbot], [msg, chatbot], queue=False).then( |
|
bot, [chatbot,temperature,max_length,top_p,top_k], chatbot |
|
) |
|
clear.click(lambda: None, None, chatbot, queue=False) |
|
|
|
demo.queue(concurrency_count=100).launch() |