import gradio as gr from transformers import TrOCRProcessor, VisionEncoderDecoderModel import requests from PIL import Image from io import BytesIO # Load TrOCR model processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten") model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten") def process_image(image): """Processes an image with TrOCR and returns the extracted text.""" # Prepare image pixel_values = processor(image, return_tensors="pt").pixel_values # Generate text generated_ids = model.generate(pixel_values, max_new_tokens=50) # Decode text generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] return generated_text # Gradio interface title = "Handwritten Text OCR with TrOCR" description = "Upload a handwritten text image and get the extracted text using Microsoft's TrOCR model." article = "

TrOCR: Transformer-based Optical Character Recognition | GitHub Repo

" examples = [ ["https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg"], ["https://upload.wikimedia.org/wikipedia/commons/8/8d/Handwriting-sample.jpg"] ] iface = gr.Interface(fn=process_image, inputs=gr.Image(type="pil"), outputs=gr.Textbox(), title=title, description=description, article=article, examples=examples) iface.launch()