Monke64 commited on
Commit
01859cc
·
1 Parent(s): ea18068

Changed requirements.txt

Browse files
Files changed (3) hide show
  1. .idea/misc.xml +3 -0
  2. app.py +11 -11
  3. requirements.txt +0 -0
.idea/misc.xml CHANGED
@@ -1,5 +1,8 @@
1
  <?xml version="1.0" encoding="UTF-8"?>
2
  <project version="4">
 
 
 
3
  <component name="ProjectRootManager" version="2" project-jdk-name="Testing" project-jdk-type="Python SDK" />
4
  <component name="PyCharmProfessionalAdvertiser">
5
  <option name="shown" value="true" />
 
1
  <?xml version="1.0" encoding="UTF-8"?>
2
  <project version="4">
3
+ <component name="Black">
4
+ <option name="sdkName" value="Testing" />
5
+ </component>
6
  <component name="ProjectRootManager" version="2" project-jdk-name="Testing" project-jdk-type="Python SDK" />
7
  <component name="PyCharmProfessionalAdvertiser">
8
  <option name="shown" value="true" />
app.py CHANGED
@@ -2,7 +2,7 @@ import streamlit as st
2
  from flask.Emotion_spotting_service import _Emotion_spotting_service
3
  from flask.Genre_spotting_service import _Genre_spotting_service
4
  from flask.Beat_tracking_service import _Beat_tracking_service
5
- from diffusers import StableDiffusionPipeline
6
  import torch
7
 
8
  emo_list = []
@@ -22,11 +22,11 @@ def load_beat_model():
22
  beat_service = _Beat_tracking_service()
23
  return beat_service
24
 
25
- @st.cache_resource
26
- def load_image_model():
27
- pipeline = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5",torch_dtype=torch.float16).to("cuda")
28
- pipeline.load_lora_weights("Weights/pytorch_lora_weights.safetensors", weight_name="pytorch_lora_weights.safetensors")
29
- return pipeline
30
 
31
 
32
  if 'emotion' not in st.session_state:
@@ -41,7 +41,7 @@ if 'beat' not in st.session_state:
41
  emotion_service = load_emo_model()
42
  genre_service = load_genre_model()
43
  beat_service = load_beat_model()
44
- image_service = load_image_model()
45
 
46
  st.title("Music2Image webpage")
47
  user_input = st.file_uploader("Upload your wav/mp3 files here", type=["wav","mp3"],key = "file_uploader")
@@ -71,7 +71,7 @@ if st.session_state.emotion != None and st.session_state.genre != None and st.se
71
  st.caption("Text description of your music file")
72
  text_output = "This piece of music falls under the " + st.session_state.genre[0] + " genre. It is of tempo " + str(int(st.session_state.beat)) + " and evokes a sense of" + st.session_state.emotion + "."
73
  st.text(text_output)
74
- if text_output:
75
- if st.button("Generate image from text description"):
76
- image = image_service(text_output)
77
- st.image(image)
 
2
  from flask.Emotion_spotting_service import _Emotion_spotting_service
3
  from flask.Genre_spotting_service import _Genre_spotting_service
4
  from flask.Beat_tracking_service import _Beat_tracking_service
5
+ #from diffusers import StableDiffusionPipeline
6
  import torch
7
 
8
  emo_list = []
 
22
  beat_service = _Beat_tracking_service()
23
  return beat_service
24
 
25
+ #@st.cache_resource
26
+ # def load_image_model():
27
+ # pipeline = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5",torch_dtype=torch.float16).to("cuda")
28
+ # pipeline.load_lora_weights("Weights/pytorch_lora_weights.safetensors", weight_name="pytorch_lora_weights.safetensors")
29
+ # return pipeline
30
 
31
 
32
  if 'emotion' not in st.session_state:
 
41
  emotion_service = load_emo_model()
42
  genre_service = load_genre_model()
43
  beat_service = load_beat_model()
44
+ #image_service = load_image_model()
45
 
46
  st.title("Music2Image webpage")
47
  user_input = st.file_uploader("Upload your wav/mp3 files here", type=["wav","mp3"],key = "file_uploader")
 
71
  st.caption("Text description of your music file")
72
  text_output = "This piece of music falls under the " + st.session_state.genre[0] + " genre. It is of tempo " + str(int(st.session_state.beat)) + " and evokes a sense of" + st.session_state.emotion + "."
73
  st.text(text_output)
74
+ #if text_output:
75
+ # if st.button("Generate image from text description"):
76
+ #image = image_service(text_output)
77
+ #st.image(image)
requirements.txt CHANGED
Binary files a/requirements.txt and b/requirements.txt differ